Deep Learning‐Based Anomaly Diagnosis Method for Capacitive Voltage Transformer Measurement Error in PIoT DOI Open Access
Zhiguo Qu,

Pengcheng Li,

Qinghui Chen

и другие.

Internet Technology Letters, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 12, 2024

ABSTRACT In the era of power Internet Things (PIoT), accuracy capacitive voltage transformers (CVTs) is crucial for maintaining reliability measurement and protection systems in smart grids, thereby contributing to overall grid stability efficiency. Accurate timely detection anomalies CVT errors essential preventing equipment failures, reducing maintenance costs, improving system reliability. However, existing anomaly diagnosis methods often rely on statistical analysis rule‐based approaches, which have limitations capturing complex patterns adapting evolving types. This paper proposes a novel deep learning‐based method error PIoT, called LSTM‐CVT. The proposed leverages long short‐term memory (LSTM) neural network architecture with three key strategies: bidirectional temporal dependency capture, hierarchical feature learning, joint estimation. experimental results demonstrate superior performance LSTM‐CVT compared state‐of‐the‐art baseline methods.

Язык: Английский

GA-FCFNN: A new forecasting method combining feature selection methods and feedforward neural networks using genetic algorithms DOI

Rongtao Zhang,

Xueling Ma, Chao Zhang

и другие.

Information Sciences, Год журнала: 2024, Номер 669, С. 120566 - 120566

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

10

Deep reinforcement learning-based online task offloading in mobile edge computing networks DOI

Haixing Wu,

Jingwei Geng,

Xiaojun Bai

и другие.

Information Sciences, Год журнала: 2023, Номер 654, С. 119849 - 119849

Опубликована: Ноя. 7, 2023

Язык: Английский

Процитировано

17

MEAformer: An all-MLP transformer with temporal external attention for long-term time series forecasting DOI
Siyuan Huang, Yepeng Liu,

Haoyi Cui

и другие.

Information Sciences, Год журнала: 2024, Номер 669, С. 120605 - 120605

Опубликована: Апрель 15, 2024

Язык: Английский

Процитировано

6

LSTM time series NDVI prediction method incorporating climate elements: A case study of Yellow River Basin, China DOI
Yan Guo, Lifeng Zhang, Yi He

и другие.

Journal of Hydrology, Год журнала: 2023, Номер 629, С. 130518 - 130518

Опубликована: Ноя. 21, 2023

Язык: Английский

Процитировано

12

Informer learning framework based on secondary decomposition for multi-step forecast of ultra-short term wind speed DOI

Zihao Jin,

Xiaomengting Fu,

Ling Xiang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 139, С. 109702 - 109702

Опубликована: Ноя. 22, 2024

Язык: Английский

Процитировано

4

Bayesian network based probabilistic weighted high-order fuzzy time series forecasting DOI Open Access
Bo Wang, Xiaodong Liu, Ming Chi

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 237, С. 121430 - 121430

Опубликована: Сен. 17, 2023

Язык: Английский

Процитировано

10

A new multivariate decomposition-ensemble approach with denoised neighborhood rough set for stock price forecasting over time-series information system DOI
Juncheng Bai, Bingzhen Sun,

Yuqi Guo

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(4)

Опубликована: Янв. 9, 2025

Язык: Английский

Процитировано

0

Long-term river flow forecasting: An integrated deep learning model with multi-scale feature extraction DOI
Deguang Wang, Qian Li, Shijun Liu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127387 - 127387

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A local multi-granularity fuzzy rough set method for multi-attribute decision making based on MOSSO-LSTM and its application in stock market DOI
Juncheng Bai, Bingzhen Sun, Jin Ye

и другие.

Applied Intelligence, Год журнала: 2024, Номер 54(7), С. 5728 - 5747

Опубликована: Апрель 1, 2024

Язык: Английский

Процитировано

2

Causalities-multiplicity oriented joint interval-trend fuzzy information granulation for interval-valued time series multi-step forecasting DOI
Yuqing Tang,

Fusheng Yu,

Wenyi Zeng

и другие.

Information Sciences, Год журнала: 2024, Номер unknown, С. 121717 - 121717

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

1