The Aitken Accelerated Gradient Algorithm for a Class of Dual‐Rate Volterra Nonlinear Systems Utilizing the Self‐Organizing Map Technique DOI
Junwei Wang, Weili Xiong, Feng Ding

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2025, Номер unknown

Опубликована: Апрель 22, 2025

ABSTRACT This article focuses on the parameter estimation issues for dual‐rate Volterra fractional‐order autoregressive moving average models. In case of sampling, we derive a identification model system and implement intersample output with help an auxiliary method. Then, combined self‐organizing map technique, propose Aitken multi‐innovation gradient‐based iterative algorithm. The parameters are estimated using algorithm, whereas differential orders determined Moreover, computational cost proposed algorithm is analyzed floating point operation. Finally, convergence analysis simulation examples show effectiveness

Язык: Английский

Fuzzy adaptive optimal backstepping control of the FO MEMS resonator under imprecise target trajectory with disturbance compensation mechanism DOI
Le Zhao, Guanci Yang, Yang Li

и другие.

Nonlinear Dynamics, Год журнала: 2023, Номер 111(19), С. 17939 - 17959

Опубликована: Авг. 7, 2023

Язык: Английский

Процитировано

32

The data-filtering based bias compensation recursive least squares identification for multi-input single-output systems with colored noises DOI

Zhenwei Shi,

Haodong Yang,

Mei Dai

и другие.

Journal of the Franklin Institute, Год журнала: 2023, Номер 360(7), С. 4753 - 4783

Опубликована: Фев. 2, 2023

Язык: Английский

Процитировано

26

Data Filtering-Based Maximum Likelihood Gradient-Based Iterative Algorithm for Input Nonlinear Box–Jenkins Systems with Saturation Nonlinearity DOI
Yamin Fan, Ximei Liu, Meihang Li

и другие.

Circuits Systems and Signal Processing, Год журнала: 2024, Номер 43(11), С. 6874 - 6910

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

15

Croup and pertussis cough sound classification algorithm based on channel attention and multiscale Mel-spectrogram DOI
Kexin Luo, Guanci Yang, Yang Li

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 91, С. 106073 - 106073

Опубликована: Фев. 6, 2024

Язык: Английский

Процитировано

13

Auxiliary model‐based recursive least squares and stochastic gradient algorithms and convergence analysis for feedback nonlinear output‐error systems DOI Open Access
Guangqin Miao, Dan Yang, Feng Ding

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(10), С. 3268 - 3289

Опубликована: Июль 29, 2024

Summary This paper deals with the problem of parameter estimation for feedback nonlinear output‐error systems. The auxiliary model‐based recursive least squares algorithm and stochastic gradient are derived estimation. Based on process theory, convergence proposed algorithms proved. simulation results indicate that can estimate parameters systems effectively.

Язык: Английский

Процитировано

9

Auxiliary Model‐Based Maximum Likelihood Multi‐Innovation Forgetting Gradient Identification for a Class of Multivariable Systems DOI Open Access
Huihui Wang, Ximei Liu

Optimal Control Applications and Methods, Год журнала: 2025, Номер unknown

Опубликована: Янв. 29, 2025

ABSTRACT Through dividing a multivariable system into several subsystems, this paper derives the sub‐identification model. Utilizing obtained model, an auxiliary model‐based maximum likelihood forgetting gradient algorithm is derived. Considering enhancing parameter estimation accuracy, multi‐innovation (AM‐ML‐MIFG) proposed taking advantage of identification theory. Simulation results test effectiveness algorithms, and confirm that AM‐ML‐MIFG has satisfactory performance in capturing dynamic properties system.

Язык: Английский

Процитировано

1

Artificial neural network and random forest regression models for modelling fatty acid and tocopherol content in oil of winter rapeseed DOI
Dragana Rajković, Ana Marjanović‐Jeromela, Lato Pezo

и другие.

Journal of Food Composition and Analysis, Год журнала: 2022, Номер 115, С. 105020 - 105020

Опубликована: Ноя. 1, 2022

Язык: Английский

Процитировано

34

Gradient-Based Recursive Parameter Estimation Methods for a Class of Time-Varying Systems from Noisy Observations DOI
Ning Xu,

Qinyao Liu,

Feng Ding

и другие.

Circuits Systems and Signal Processing, Год журнала: 2024, Номер 43(11), С. 7089 - 7116

Опубликована: Июль 29, 2024

Язык: Английский

Процитировано

8

Parameter estimation methods for time‐invariant continuous‐time systems from dynamical discrete output responses based on the Laplace transforms DOI

Kader Ali Ibrahim,

Feng Ding

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(9), С. 3213 - 3232

Опубликована: Июль 3, 2024

Summary In industrial process control systems, parameter estimation is crucial for controller design and model analysis. This article examines the issue of identifying parameters in continuous‐time models. presents a stochastic gradient algorithm recursive least squares continuous systems. It derives identification linear systems based on Laplace transforms input output To prove that techniques given here work, we have included simulated example.

Язык: Английский

Процитировано

7

Distributed identification based partially-coupled recursive generalized extended least squares algorithm for multivariate input–output-error systems with colored noises from observation data DOI
Qinyao Liu, Feiyan Chen, Qian Guo

и другие.

Journal of Computational and Applied Mathematics, Год журнала: 2024, Номер 449, С. 115976 - 115976

Опубликована: Май 7, 2024

Язык: Английский

Процитировано

5