Data-driven dynamic inclination angle estimation of monorail crane under complex road conditions DOI
Zechao Liu, Weimin Wu, Jingzhao Li

и другие.

Measurement Science and Technology, Год журнала: 2024, Номер 35(11), С. 116117 - 116117

Опубликована: Авг. 12, 2024

Abstract Monorail cranes are crucial in facilitating auxiliary transportation within deep mining operations. As unmanned driving technology becomes increasingly prevalent monorail crane operations, it encounters challenges such as low accuracy and unreliable attitude recognition, significantly jeopardizing the safety of Hence, this study proposes a dynamic inclination estimation methodology utilizing Estimation-Focused-EKFNet algorithm. Firstly, based on characteristics crane, model is established, which value can be calculated real-time by extended Kalman filter (EKF) estimator; however, given complexity road conditions, order to improve recognition accuracy, CNN-LSTM-ATT algorithm combining convolutional neural network (CNN), long short-term memory (LSTM) attention mechanism (ATT) used firstly predict current camber predicted combined with CNN mechanism, then observation EKF estimator, finally realizes that estimator output accurate real-time. Experimental results indicate that, compared unscented filter, LSTM-ATT, CNN-LSTM algorithms, enhances complex conditions at least 52.34%, improving reliability. Its reaches 99.28%, effectively ensuring for cranes.

Язык: Английский

Online identification methods for a class of Hammerstein nonlinear systems using the adaptive particle filtering DOI
Huan Xu, Ling Xu, Shaobo Shen

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115181 - 115181

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

35

The filtering-based recursive least squares identification and convergence analysis for nonlinear feedback control systems with coloured noises DOI
Ling Xu, Huan Xu, Chun Wei

и другие.

International Journal of Systems Science, Год журнала: 2024, Номер 55(16), С. 3461 - 3484

Опубликована: Июль 7, 2024

Язык: Английский

Процитировано

22

Interpretability Research of Deep Learning: A Literature Survey DOI

Biao Xu,

Guanci Yang

Information Fusion, Год журнала: 2024, Номер 115, С. 102721 - 102721

Опубликована: Окт. 9, 2024

Язык: Английский

Процитировано

22

Parameter Estimation and Model-free Multi-innovation Adaptive Control Algorithms DOI
Xin Liu,

Pinle Qin

International Journal of Control Automation and Systems, Год журнала: 2024, Номер 22(11), С. 3509 - 3524

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

21

Data Filtering-Based Maximum Likelihood Gradient-Based Iterative Algorithm for Input Nonlinear Box–Jenkins Systems with Saturation Nonlinearity DOI
Yamin Fan, Ximei Liu, Meihang Li

и другие.

Circuits Systems and Signal Processing, Год журнала: 2024, Номер 43(11), С. 6874 - 6910

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

20

Auxiliary model maximum likelihood gradient‐based iterative identification for feedback nonlinear systems DOI
Lijuan Liu, Fu Li, Junxia Ma

и другие.

Optimal Control Applications and Methods, Год журнала: 2024, Номер 45(5), С. 2346 - 2363

Опубликована: Июнь 17, 2024

Abstract This article considers the iterative identification problems for a class of feedback nonlinear systems with moving average noise. The model contains both dynamic linear module and static module, which brings challenges to identification. By utilizing key term separation technique, unknown parameters from modules are included in parameter vector. Furthermore, an auxiliary maximum likelihood gradient‐based algorithm is derived estimate parameters. In addition, stochastic gradient as comparison. numerical simulation results indicate that can effectively get more accurate estimates than algorithm.

Язык: Английский

Процитировано

19

Auxiliary Model‐Based Maximum Likelihood Multi‐Innovation Forgetting Gradient Identification for a Class of Multivariable Systems DOI Open Access
Huihui Wang, Ximei Liu

Optimal Control Applications and Methods, Год журнала: 2025, Номер unknown

Опубликована: Янв. 29, 2025

ABSTRACT Through dividing a multivariable system into several subsystems, this paper derives the sub‐identification model. Utilizing obtained model, an auxiliary model‐based maximum likelihood forgetting gradient algorithm is derived. Considering enhancing parameter estimation accuracy, multi‐innovation (AM‐ML‐MIFG) proposed taking advantage of identification theory. Simulation results test effectiveness algorithms, and confirm that AM‐ML‐MIFG has satisfactory performance in capturing dynamic properties system.

Язык: Английский

Процитировано

3

Iterative parameter identification for Hammerstein systems with ARMA noises by using the filtering identification idea DOI Creative Commons
Saïda Bedoui, Kamel Abderrahim, Feng Ding

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(9), С. 3134 - 3160

Опубликована: Июнь 28, 2024

Summary In practical applications, many processes have nonlinear characteristics that require models for accurate description. However, constructing such and determining their parameters are a challenging task. This article explores filtered identification methods estimating the of particular type Hammerstein systems with ARMA noise. An auxiliary model‐based least squares algorithm is developed based on model idea. A hierarchical utilizes principle proposed to enhance computational efficiency. Additionally, key term separation technique employed express system output as linear combination parameters, allowing be decomposed into smaller subsystems more efficient estimation parameters. Simulation results demonstrate effectiveness these algorithms.

Язык: Английский

Процитировано

15

Parameter estimation methods for time‐invariant continuous‐time systems from dynamical discrete output responses based on the Laplace transforms DOI

Kader Ali Ibrahim,

Feng Ding

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(9), С. 3213 - 3232

Опубликована: Июль 3, 2024

Summary In industrial process control systems, parameter estimation is crucial for controller design and model analysis. This article examines the issue of identifying parameters in continuous‐time models. presents a stochastic gradient algorithm recursive least squares continuous systems. It derives identification linear systems based on Laplace transforms input output To prove that techniques given here work, we have included simulated example.

Язык: Английский

Процитировано

11

Sliding Window Iterative Identification for Nonlinear Closed‐Loop Systems Based on the Maximum Likelihood Principle DOI
Lijuan Liu, Fu Li, Wei Liu

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 1, 2024

ABSTRACT The parameter estimation problem for the nonlinear closed‐loop systems with moving average noise is considered in this article. For purpose of overcoming difficulty that dynamic linear module and static lead to identification complexity issues, unknown parameters from both modules are included a vector by use key term separation technique. Furthermore, an sliding window maximum likelihood least squares iterative algorithm gradient derived estimate parameters. numerical simulation indicates efficiency proposed algorithms.

Язык: Английский

Процитировано

10