Опубликована: Окт. 15, 2024
Язык: Английский
Опубликована: Окт. 15, 2024
Язык: Английский
Journal of Hydrology, Год журнала: 2024, Номер 635, С. 131194 - 131194
Опубликована: Апрель 6, 2024
Язык: Английский
Процитировано
17Journal of Hydrology, Год журнала: 2025, Номер 656, С. 133002 - 133002
Опубликована: Март 5, 2025
Язык: Английский
Процитировано
3Remote Sensing, Год журнала: 2025, Номер 17(5), С. 837 - 837
Опубликована: Фев. 27, 2025
Soil moisture (SM) monitoring in farmland at a regional scale is crucial for precision irrigation management and ensuring food security. However, existing methods SM estimation encounter significant challenges related to accuracy, generalizability, automation. This study proposes an integrated data fusion method systematically assess the potential of three automated machine learning (AutoML) frameworks—tree-based pipeline optimization tool (TPOT), AutoGluon, H2O AutoML—in retrieving SM. To evaluate impact input variables on six scenarios were designed: multispectral (MS), thermal infrared (TIR), MS combined with TIR, auxiliary data, TIR comprehensive combination MS, data. The research was conducted winter wheat cultivation area within People’s Victory Canal Irrigation Area, focusing 0–40 cm soil layer. results revealed that scenario incorporating all types (MS + auxiliary) achieved highest retrieval accuracy. Under this scenario, AutoML frameworks demonstrated optimal performance. AutoGluon superior performance most scenarios, particularly excelling scenario. It accuracy Pearson correlation coefficient (R) value 0.822, root mean square error (RMSE) 0.038 cm3/cm3, relative (RRMSE) 16.46%. underscores critical role strategies enhancing highlights advantages regional-scale retrieval. findings offer robust technical foundation theoretical guidance advancing efficient monitoring.
Язык: Английский
Процитировано
2Industrial Crops and Products, Год журнала: 2025, Номер 226, С. 120582 - 120582
Опубликована: Янв. 31, 2025
Язык: Английский
Процитировано
1ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2023, Номер 205, С. 246 - 262
Опубликована: Окт. 18, 2023
Язык: Английский
Процитировано
18Remote Sensing, Год журнала: 2024, Номер 16(1), С. 200 - 200
Опубликована: Янв. 3, 2024
Soil moisture (SM) data can provide guidance for decision-makers in fields such as drought monitoring and irrigation management. Moisture Active Passive (SMAP) satellite offers sufficient spatial resolution global-scale applications, but its utility is limited regional areas due to lower resolution. To address this issue, study proposed a downscaling framework based on the Stacking strategy. The integrated extreme gradient boosting (XGBoost), light machine (LightGBM), categorical (CatBoost) generate 1 km SM using 15 high-resolution factors derived from multi-source datasets. In particular, test influence of terrain partitioning results, Anhui Province, which has diverse features, was selected area. results indicated that performance three base models varied, developed strategy maximized potential each model with encouraging results. Specifically, we found that: (1) achieved highest accuracy all regions, order was: XGBoost > CatBoost LightGBM. (2) Compared measured at 87 sites, downscaled outperformed other products well without partitioning, an average ubRMSE 0.040 m3/m3. (3) responded positively rainfall events mitigated systematic bias SMAP. It also preserved trend original SMAP, higher levels humid region relatively semi-humid region. Overall, provided new soil revealed some interesting findings related effectiveness impact accuracy.
Язык: Английский
Процитировано
8Journal of Hydrology, Год журнала: 2024, Номер 630, С. 130700 - 130700
Опубликована: Янв. 23, 2024
Язык: Английский
Процитировано
6Remote Sensing, Год журнала: 2023, Номер 15(22), С. 5361 - 5361
Опубликована: Ноя. 15, 2023
Root zone soil moisture (RZSM) controls vegetation transpiration and hydraulic distribution processes plays a key role in energy water exchange between land surface atmosphere; hence, accurate estimation of RZSM is crucial for agricultural irrigation management practices. Traditional methods to measure at stations are laborious spatially uneven, making it difficult obtain data on large scale. Remote sensing techniques can provide large-scale range, but they only (SSM) with depth approximately 5–10 cm. In order range deeper layers, especially the crop root about 100–200 cm, numerous based remote inversion have been proposed. This paper analyzes summarizes research progress sensing-based past few decades classifies these into four categories: empirical methods, semi-empirical physics-based machine learning methods. Then, advantages disadvantages various outlined. Additionally an outlook future development made discussed.
Язык: Английский
Процитировано
13ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2023, Номер 203, С. 211 - 229
Опубликована: Авг. 9, 2023
Язык: Английский
Процитировано
10Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132884 - 132884
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0