Prediction of compression coefficient of Nanjing floodplain soft soil based on explainable artificial intelligence DOI
Bin Ruan,

Chongjin Liu,

Zhenglong Zhou

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103308 - 103308

Опубликована: Апрель 8, 2025

Язык: Английский

Prediction of concrete and FRC properties at high temperature using machine and deep learning: A review of recent advances and future perspectives DOI
Nizar Faisal Alkayem, Lei Shen, Ali Mayya

и другие.

Journal of Building Engineering, Год журнала: 2023, Номер 83, С. 108369 - 108369

Опубликована: Дек. 29, 2023

Язык: Английский

Процитировано

99

Predictive models in machine learning for strength and life cycle assessment of concrete structures DOI

A. Dinesh,

B. Rahul Prasad

Automation in Construction, Год журнала: 2024, Номер 162, С. 105412 - 105412

Опубликована: Апрель 3, 2024

Язык: Английский

Процитировано

19

Stacked-based machine learning to predict the uniaxial compressive strength of concrete materials DOI
Abdelrahman Kamal Hamed, Mohamed Kamel Elshaarawy, Mostafa M. Alsaadawi

и другие.

Computers & Structures, Год журнала: 2025, Номер 308, С. 107644 - 107644

Опубликована: Янв. 6, 2025

Язык: Английский

Процитировано

8

Modified particle packing approach for optimizing waste marble powder as a cement substitute in high-performance concrete DOI
Ahmed Essam,

Sahar A. Mostafa,

Mehran Khan

и другие.

Construction and Building Materials, Год журнала: 2023, Номер 409, С. 133845 - 133845

Опубликована: Окт. 31, 2023

Язык: Английский

Процитировано

32

Assessment of short and long-term pozzolanic activity of natural pozzolans using machine learning approaches DOI
Jitendra Khatti, Berivan Yılmazer Polat

Structures, Год журнала: 2024, Номер 68, С. 107159 - 107159

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

15

Prediction of high-performance concrete strength using machine learning with hierarchical regression DOI
Iman Kattoof Harith,

Wissam Nadir,

Mustafa S. Salah

и другие.

Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 7(5), С. 4911 - 4922

Опубликована: Май 16, 2024

Язык: Английский

Процитировано

10

Data-driven predictive model of coal permeability based on microscopic fracture structure characterization DOI Creative Commons
Tianhao Yan, Xiaomeng Xu, Jiafeng Liu

и другие.

Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

A critical analysis of compressive strength prediction of glass fiber and carbon fiber reinforced concrete over machine learning models DOI

K. K. Yaswanth,

V. S. Vani,

Krupasindhu Biswal

и другие.

Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(3)

Опубликована: Фев. 14, 2025

Язык: Английский

Процитировано

1

Soft computing-based prediction models for compressive strength of concrete DOI Creative Commons
Manish Kumar, Rahul Biswas,

Divesh Ranjan Kumar

и другие.

Case Studies in Construction Materials, Год журнала: 2023, Номер 19, С. e02321 - e02321

Опубликована: Июль 22, 2023

The complexity of concrete's composition makes it difficult to predict its compressive strength, which is a highly valuable and desired characteristic. Traditional methods for prediction are expensive time-consuming, resulting in limited data availability. However, modern soft-computing models have emerged as reliable solution accurately forecasting strength. research proposes novel Deep Neural Network (DNN), Multivariate Adaptive Regression Splines (MARS) Extreme Learning Machine (ELM) based machine learning (ML) the strength concrete added with various proportions fly ash silica fume. For this purpose, dataset 144 trials, having 8 input parameters taken from literature. performance confirmed using statistical parameters. Rank Analysis reveals that DNN best-performing model (Rank =52, RTR2=0.983 RTs2=0.954), closely followed by MARS =38, RTR2=0.974 RTs2=0.956); while ELM lags behind other two counterparts. results further an error matrix, external validation AIC criteria. visual interpretation provided Taylor diagram. has edge over terms providing user-friendly solution.

Язык: Английский

Процитировано

21

Predicting mechanical properties of sustainable green concrete using novel machine learning: Stacking and gene expression programming DOI Creative Commons
Muhammad Waqas Ashraf, Adnan Khan, Yongming Tu

и другие.

REVIEWS ON ADVANCED MATERIALS SCIENCE, Год журнала: 2024, Номер 63(1)

Опубликована: Янв. 1, 2024

Abstract Using rice husk ash (RHA) as a cement substitute in concrete production has potential benefits, including consumption and mitigating environmental effects. The feasibility of RHA on strength was investigated this research by predicting the split tensile (SPT) flexural (FS) (RHAC). study used machine learning (ML) methods such ensemble stacking gene expression programming (GEP). model improved using base learner configurations ML models, as, random forest (RF), support vector regression, gradient boosting regression. proposed models were validated statistical tests external validation criteria. Moreover, effect input parameters Shapley adaptive exPlanations (SHAP) for RF parametric analysis GEP-based models. revealed that integrates predictions demonstrated superior performance, with R values greater than 0.98 0.96. Mean absolute error root mean square both SPT FS 0.23, 0.3, 0.5, 0.7 MPA, respectively. SHAP water, cement, superplasticizer, age influential RHAC strength. Furthermore, can be predicted an acceptable GEP expressions standard design procedure.

Язык: Английский

Процитировано

5