Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103308 - 103308
Опубликована: Апрель 8, 2025
Язык: Английский
Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103308 - 103308
Опубликована: Апрель 8, 2025
Язык: Английский
Journal of Building Engineering, Год журнала: 2023, Номер 83, С. 108369 - 108369
Опубликована: Дек. 29, 2023
Язык: Английский
Процитировано
99Automation in Construction, Год журнала: 2024, Номер 162, С. 105412 - 105412
Опубликована: Апрель 3, 2024
Язык: Английский
Процитировано
19Computers & Structures, Год журнала: 2025, Номер 308, С. 107644 - 107644
Опубликована: Янв. 6, 2025
Язык: Английский
Процитировано
8Construction and Building Materials, Год журнала: 2023, Номер 409, С. 133845 - 133845
Опубликована: Окт. 31, 2023
Язык: Английский
Процитировано
32Structures, Год журнала: 2024, Номер 68, С. 107159 - 107159
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
15Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 7(5), С. 4911 - 4922
Опубликована: Май 16, 2024
Язык: Английский
Процитировано
10Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(3)
Опубликована: Фев. 14, 2025
Язык: Английский
Процитировано
1Case Studies in Construction Materials, Год журнала: 2023, Номер 19, С. e02321 - e02321
Опубликована: Июль 22, 2023
The complexity of concrete's composition makes it difficult to predict its compressive strength, which is a highly valuable and desired characteristic. Traditional methods for prediction are expensive time-consuming, resulting in limited data availability. However, modern soft-computing models have emerged as reliable solution accurately forecasting strength. research proposes novel Deep Neural Network (DNN), Multivariate Adaptive Regression Splines (MARS) Extreme Learning Machine (ELM) based machine learning (ML) the strength concrete added with various proportions fly ash silica fume. For this purpose, dataset 144 trials, having 8 input parameters taken from literature. performance confirmed using statistical parameters. Rank Analysis reveals that DNN best-performing model (Rank =52, RTR2=0.983 RTs2=0.954), closely followed by MARS =38, RTR2=0.974 RTs2=0.956); while ELM lags behind other two counterparts. results further an error matrix, external validation AIC criteria. visual interpretation provided Taylor diagram. has edge over terms providing user-friendly solution.
Язык: Английский
Процитировано
21REVIEWS ON ADVANCED MATERIALS SCIENCE, Год журнала: 2024, Номер 63(1)
Опубликована: Янв. 1, 2024
Abstract Using rice husk ash (RHA) as a cement substitute in concrete production has potential benefits, including consumption and mitigating environmental effects. The feasibility of RHA on strength was investigated this research by predicting the split tensile (SPT) flexural (FS) (RHAC). study used machine learning (ML) methods such ensemble stacking gene expression programming (GEP). model improved using base learner configurations ML models, as, random forest (RF), support vector regression, gradient boosting regression. proposed models were validated statistical tests external validation criteria. Moreover, effect input parameters Shapley adaptive exPlanations (SHAP) for RF parametric analysis GEP-based models. revealed that integrates predictions demonstrated superior performance, with R values greater than 0.98 0.96. Mean absolute error root mean square both SPT FS 0.23, 0.3, 0.5, 0.7 MPA, respectively. SHAP water, cement, superplasticizer, age influential RHAC strength. Furthermore, can be predicted an acceptable GEP expressions standard design procedure.
Язык: Английский
Процитировано
5