Structures, Год журнала: 2024, Номер 71, С. 107965 - 107965
Опубликована: Дек. 19, 2024
Язык: Английский
Structures, Год журнала: 2024, Номер 71, С. 107965 - 107965
Опубликована: Дек. 19, 2024
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер unknown, С. 104089 - 104089
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
5Journal of Marine Science and Engineering, Год журнала: 2024, Номер 12(4), С. 563 - 563
Опубликована: Март 27, 2024
Wind turbine towers experience complex dynamic loads during actual operation, and these are difficult to accurately predict in advance, which may lead inaccurate structural fatigue strength assessment the design phase, thereby posing safety risks wind tower. However, online monitoring of has become possible with development load identification technology. Therefore, an method for exerted on was developed this study estimate using strain, can be used loads. The tower were simplified into six equivalent concentrated forces topside tower, initial mathematical model established based theory frequency domain, many candidate sensor locations directions considered. Then, expressed as a linear system equations. A numerical example verify accuracy stability identification, results indicate that combined Moore–Penrose inverse algorithm provide stable accurate reconstruction results. uses too sensors, is not conducive engineering applications. D-optimal C-optimal methods reduce dimension determine location direction strain gauges. adopts direct optimisation search strategy, while indirect strategy. four examples show dimensionality reduction leads high accuracy, provides more robust Moreover, damage calculated closely approximates derived from finite element simulation load, relative error within 6%. offers pragmatic solution acquisition
Язык: Английский
Процитировано
9Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(4)
Опубликована: Март 14, 2025
Язык: Английский
Процитировано
0Structural Concrete, Год журнала: 2024, Номер unknown
Опубликована: Июль 7, 2024
Abstract Rising environmental awareness has prompted in‐depth studies on how the concrete industry affects environment. Using recycled aggregates (RCAs) and supplementary cementitious materials (SCMs) in manufacturing provides advantages for sustainability. However, broader chemical composition of SCMs inferior qualities RCAs compared with natural (NAs) often lead to a decrease mechanical strength. The difficulty lies foreseeing inclusion will affect compressive artificial neural network (ANN) approach presented herein can precisely forecast aggregate (RAC) strength, even when incorporates SCMs. analysis employing connection weight (CWA) determines input variables influence Results indicate silica fume contributes most followed by cement content, modulus, fine dosage, coarse aggregate. Additionally, amount water utilized, water/cement ratio, presence RCA are all detrimental adverse effect materials' alumina modulus be attributed increased demand during their reaction. Performance metrics final ANN model testing data subset include R 2 = 0.94, RMSE 3.11, utilizing 834 observations after outlier treatment training validation purposes. In summary, ANN‐based demonstrates its efficacy predicting strength incorporating RCAs, shedding light influential factors performance.
Язык: Английский
Процитировано
3Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04456 - e04456
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Апрель 27, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 10, 2025
Язык: Английский
Процитировано
0Asian Journal of Civil Engineering, Год журнала: 2024, Номер 25(4), С. 3251 - 3261
Опубликована: Фев. 5, 2024
Язык: Английский
Процитировано
2Materials Today Communications, Год журнала: 2024, Номер 40, С. 109527 - 109527
Опубликована: Июнь 13, 2024
Язык: Английский
Процитировано
2Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Дек. 30, 2024
The present research incorporates five AI methods to enhance and forecast the characteristics of building envelopes. In this study, Response Surface Methodology (RSM), Support Vector Machine (SVM), Gradient Boosting (GB), Artificial Neural Networks (ANN), Random Forest (RF) machine learning method for optimization predicting mechanical properties natural fiber addition incorporated with construction demolition waste (CDW) as replacement Fine Aggregate in Paver blocks. factors considered were cement content, fine aggregate, CDW, coconut fibre, while resulting measure was machinal paver Furthermore, techniques precision extensively evaluated. outcomes from both training testing phases demonstrated strong predictive power RSM, SVM, GB, ANN, RF a criterion used Root Mean square error (RMSE), (MSE), Absolute Error (MAE) correlation coefficient (R). Moreover, results that GB ANN provide enhanced performance comparison SVM determining factors.
Язык: Английский
Процитировано
2