Preliminary Research on Outdoor Thermal Comfort Evaluation in Severe Cold Regions by Machine Learning DOI Creative Commons
Tianyu Xi, Ming Wang,

Enjia Cao

и другие.

Buildings, Год журнала: 2024, Номер 14(1), С. 284 - 284

Опубликована: Янв. 20, 2024

The thermal comfort evaluation of the urban environment arouses widespread concern among scholars, and research in this field is mostly based on indexes such as PMV, PET, SET, UTCI, etc. These index models are complex calculation process poor operability, which makes it difficult for people who lack a relevant knowledge background to understand, calculate, apply them. purpose study provide simple, efficient, easy-to-operate outdoor model severe cold areas China using machine learning method. In study, physical parameters obtained by measurement, individual information questionnaire survey. applicability four studied. A total 320 questionnaires collected. results show that correlation coefficients between predicted values voting extreme gradient lifting model, random forest neural network 0.9313, 0.7148, 0.9115, 0.5325, respectively. Further analysis with highest coefficient shows factors (such residence time, distance hometown residence, clothing, age, height, weight) environmental air humidity (RH), wind speed (v), temperature (Ta), black bulb (Tg)) have different influences evaluation. summary, method evaluate simpler, more direct, can make up consideration index. reference value application China.

Язык: Английский

Personalized optimal room temperature and illuminance for maximizing occupant's mental task performance using physiological data DOI
Hardik Chauhan, Youjin Jang,

Surakshya Pradhan

и другие.

Journal of Building Engineering, Год журнала: 2023, Номер 78, С. 107757 - 107757

Опубликована: Сен. 10, 2023

Язык: Английский

Процитировано

21

A systematic review of research on personal thermal comfort using infrared technology DOI

Yeyu Wu,

Jiaqi Zhao, Bin Cao

и другие.

Energy and Buildings, Год журнала: 2023, Номер 301, С. 113666 - 113666

Опубликована: Окт. 21, 2023

Язык: Английский

Процитировано

20

Development of an automatic personal comfort system (APCS) based on real-time thermal sensation prediction DOI

Yeyu Wu,

Bin Cao, Yingxin Zhu

и другие.

Building and Environment, Год журнала: 2023, Номер 246, С. 110958 - 110958

Опубликована: Окт. 20, 2023

Язык: Английский

Процитировано

19

Optimizing personal comfort: Short-term personalized heating impact on sanitation workers' thermo-physiological responses DOI

Chujian Gu,

Yang Li,

Shi Chen

и другие.

Building and Environment, Год журнала: 2024, Номер unknown, С. 112112 - 112112

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

9

Preliminary Research on Outdoor Thermal Comfort Evaluation in Severe Cold Regions by Machine Learning DOI Creative Commons
Tianyu Xi, Ming Wang,

Enjia Cao

и другие.

Buildings, Год журнала: 2024, Номер 14(1), С. 284 - 284

Опубликована: Янв. 20, 2024

The thermal comfort evaluation of the urban environment arouses widespread concern among scholars, and research in this field is mostly based on indexes such as PMV, PET, SET, UTCI, etc. These index models are complex calculation process poor operability, which makes it difficult for people who lack a relevant knowledge background to understand, calculate, apply them. purpose study provide simple, efficient, easy-to-operate outdoor model severe cold areas China using machine learning method. In study, physical parameters obtained by measurement, individual information questionnaire survey. applicability four studied. A total 320 questionnaires collected. results show that correlation coefficients between predicted values voting extreme gradient lifting model, random forest neural network 0.9313, 0.7148, 0.9115, 0.5325, respectively. Further analysis with highest coefficient shows factors (such residence time, distance hometown residence, clothing, age, height, weight) environmental air humidity (RH), wind speed (v), temperature (Ta), black bulb (Tg)) have different influences evaluation. summary, method evaluate simpler, more direct, can make up consideration index. reference value application China.

Язык: Английский

Процитировано

8