Real-Time Deep-Learning-Driven Parallel MPC DOI
Roman Kohút,

Erika Pavlovičová,

Kristína Fedorová

и другие.

Опубликована: Дек. 13, 2023

A novel real-time approximated MPC control policy based on deep learning is proposed to address the high computational burden of model predictive (MPC) for large-scale systems and those with fast dynamics. This method approximates optimal solution distributed optimization problems in ALADIN-based parallel design framework, resulting a highly effective approach that outperforms other well-known methods solving problem. The numerical case study shows promising results, demonstrating potential this implementation.

Язык: Английский

A recent overview of proton exchange membrane fuel cells: Fundamentals, applications, and advances DOI
Naef A.A. Qasem

Applied Thermal Engineering, Год журнала: 2024, Номер 252, С. 123746 - 123746

Опубликована: Июнь 19, 2024

Язык: Английский

Процитировано

22

Dynamic thermal management of proton exchange membrane fuel cell vehicle system using the tube-based model predictive control DOI
Jishen Cao, Cong Yin, Renkang Wang

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 70, С. 493 - 509

Опубликована: Май 18, 2024

Язык: Английский

Процитировано

8

Self-organizing modeling and control of activated sludge process based on fuzzy neural network DOI

Jinkun Zhao,

Hongliang Dai, Zeyu Wang

и другие.

Journal of Water Process Engineering, Год журнала: 2023, Номер 53, С. 103641 - 103641

Опубликована: Март 15, 2023

Язык: Английский

Процитировано

11

Power density optimization for proton exchange membrane fuel cell stack based on data-driven and improved light spectrum algorithm DOI
Xi Chen, Wentao Feng,

Yukang Hu

и другие.

Energy Conversion and Management, Год журнала: 2025, Номер 326, С. 119467 - 119467

Опубликована: Янв. 2, 2025

Язык: Английский

Процитировано

0

Constraint relaxation active thermal management strategy under multi-source perturbations to enhance fuel cell vehicle's output power and voltage consistency DOI
Jishen Cao, Cong Yin, Renkang Wang

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 102, С. 332 - 347

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

0

A novel cascade control of PEMFC: Regulation of stack voltage and air breathing subsystem DOI
Bharti Panjwani, Jyoti Yadav, Pankaj Kumar

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 102, С. 1530 - 1545

Опубликована: Янв. 20, 2025

Язык: Английский

Процитировано

0

Predictive fuel cell thermal management for fuel cell electric tractors DOI Creative Commons
Christian Varlese, Maximilian Haslinger,

Christian Junger

и другие.

Applied Thermal Engineering, Год журнала: 2025, Номер unknown, С. 125835 - 125835

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Fast and accurate estimation of PEMFCs model parameters using a dimension learning-based modified grey wolf metaheuristic algorithm DOI
Salem Saidi, Rabeh Abbassi, M. Premkumar

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 116917 - 116917

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Maximum power point control of proton exchange membrane fuel cells using a generalized predictive controller equipped with MLP neural network DOI
Haichao Feng

Sadhana, Год журнала: 2025, Номер 50(2)

Опубликована: Март 19, 2025

Язык: Английский

Процитировано

0

Towards Reliable Prediction of Performance for Polymer Electrolyte Membrane Fuel Cells via Machine Learning-Integrated Hybrid Numerical Simulations DOI Open Access
Rashed Kaiser, Chi‐Yeong Ahn, Yun-Ho Kim

и другие.

Processes, Год журнала: 2024, Номер 12(6), С. 1140 - 1140

Опубликована: Май 31, 2024

For mitigating global warming, polymer electrolyte membrane fuel cells have become promising, clean, and sustainable alternatives to existing energy sources. To increase the density efficiency of (PEMFC), a comprehensive numerical modeling approach that can adequately predict multiphysics performance relative actual test such as an acceptable depiction electrochemistry, mass/species transfer, thermal management, water generation/transportation is required. However, models suffer from reliability issues due their dependency on several assumptions made for sake simplification, well poor choices approximations in material characterization electrochemical parameters. In this regard, data-driven machine learning could provide missing more appropriate parameters conventional computational fluid dynamics models. The purpose present overview explore state art individual components PEMFC, limitations, how they be significantly improved by hybrid techniques integrating with approaches. Furthermore, detailed future direction proposed solution related PEMFC its impact transportation sector discussed.

Язык: Английский

Процитировано

2