Research on the Prediction and Implementation Path of Carbon Peaking in Daqing City DOI
Yu Qi,

Guohua Fan

Journal of statistics and economics., Год журнала: 2024, Номер 1(6), С. 24 - 33

Опубликована: Дек. 1, 2024

This study selects carbon emission data from Daqing City 2001 to 2023 as the subject of analysis, employs STIRPAT model and ridge regression method decompose key factors affecting emissions, combines scenario analysis construct 32 different combined scenarios predict emissions peak time 2024 2035. results show that are generally positively correlated with City; Under baseline scenario, is expected reach its in 2030, while under single pathway scenarios, likely achieve early 2025. Based on prediction results, propose suggestions both industry technology aspects, take lead achieving peak.

Язык: Английский

A Review of Building Carbon Emission Accounting and Prediction Models DOI Creative Commons
Huan Gao,

Xinke Wang,

Kang Wu

и другие.

Buildings, Год журнала: 2023, Номер 13(7), С. 1617 - 1617

Опубликована: Июнь 26, 2023

As an industry that consumes a quarter of social energy and emits third greenhouse gases, the construction has important responsibility to achieve carbon peaking neutrality. Based on Web Science, Science-Direct, CNKI, accounting prediction models emissions from buildings are reviewed. The emission factor method, mass balance actual measurement method analyzed. top-down bottom-up their subdivision introduced Individual building assessments generally adopt physical model, while urban economic input-output model. Most current studies follow path “exploring influencing factors then putting forward based factors”. driving mainly use Stochastic Impacts by Regression Population, Affluence, Technology (STIRPAT) Logarithmic Mean Divisia Index (LMDI) grey correlation degree other models. model is realized regression system dynamics mathematical models, as well Artificial Neural Network (ANN) Support Vector Machine (SVM) machine learning At present, research individual focuses operational consumption, for stages should become focus in future research.

Язык: Английский

Процитировано

53

Carbon trading price forecasting in digitalization social change era using an explainable machine learning approach: The case of China as emerging country evidence DOI
Ning Wang, Z. J. Guo, Dawei Shang

и другие.

Technological Forecasting and Social Change, Год журнала: 2024, Номер 200, С. 123178 - 123178

Опубликована: Янв. 3, 2024

Язык: Английский

Процитировано

22

Carbon emissions accounting and prediction in urban agglomerations from multiple perspectives of production, consumption and income DOI
Wencong Yue, Yangqing Li, Meirong Su

и другие.

Applied Energy, Год журнала: 2023, Номер 348, С. 121445 - 121445

Опубликована: Июль 5, 2023

Язык: Английский

Процитировано

24

Study on the spatial network structure of energy carbon emission efficiency and its driving factors in Chinese cities DOI
Hao Cheng, Boyu Wu,

Xiaokun Jiang

и другие.

Applied Energy, Год журнала: 2024, Номер 371, С. 123689 - 123689

Опубликована: Июнь 14, 2024

Язык: Английский

Процитировано

12

A factorial-analysis-based Bayesian neural network method for quantifying China's CO2 emissions under dual-carbon target DOI
Ziyi Wang, Yongping Li, Guohe Huang

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 920, С. 170698 - 170698

Опубликована: Фев. 9, 2024

Язык: Английский

Процитировано

9

Modelling monthly-gridded carbon emissions based on nighttime light data DOI
Ruxing Wan,

Shuangyue Qian,

Jianhui Ruan

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 354, С. 120391 - 120391

Опубликована: Фев. 15, 2024

Язык: Английский

Процитировано

8

Enhancing sustainability integration in Sustainable Enterprise Resource Planning (S-ERP) system: Application of Transaction Cost Theory and case study analysis DOI Creative Commons

Kushal Anjaria

International Journal of Information Management Data Insights, Год журнала: 2024, Номер 4(2), С. 100243 - 100243

Опубликована: Апрель 23, 2024

Environmental stewardship and sustainability have become critical priorities in the contemporary business environment. Corporations are integrating sustainable practices at process level via Sustainable Enterprise Resource Planning (S-ERP). However, a recognised shortfall of S-ERP systems lies their potential inability to integrate metrics across all functions holistically. To navigate this limitation, our study introduces application Transaction Cost Theory (TCT). By treating processes as input-output systems, we apply theory quantify likelihood overall losses. This novel approach bridges gap, allowing for comprehensive integration processes. The essence methodology is leverage static input data collected by regarding environmental impact extrapolate provide broader understanding losses gains. We've tested validated through two case studies; one about product design development, other evaluation modular versus conventional construction methods. results inform formulation robust policies akin S-ERP, paving way more practices.

Язык: Английский

Процитировано

6

A graph-factor-based random forest model for assessing and predicting carbon emission patterns - Pearl River Delta urban agglomeration DOI
Y.K. Ding, Yongping Li, Heran Zheng

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 469, С. 143220 - 143220

Опубликована: Июль 20, 2024

Язык: Английский

Процитировано

6

The contribution of carbon capture and storage to Canada's net-zero plan DOI
Kai Zhang, Hon Chung Lau, Zhangxin Chen

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 404, С. 136901 - 136901

Опубликована: Март 28, 2023

Язык: Английский

Процитировано

16

The evolution of research at the intersection of industrial ecology and artificial intelligence DOI Creative Commons

Yongyue Gong,

Fengmei Ma, Heming Wang

и другие.

Journal of Industrial Ecology, Год журнала: 2025, Номер unknown

Опубликована: Янв. 8, 2025

Abstract The intersection of artificial intelligence (AI) and industrial ecology (IE) is gaining significant attention due to AI's potential enhance the sustainability production consumption systems. Understanding current state research in this field can highlight covered topics, identify trends, reveal understudied topics warranting future research. However, few studies have systematically reviewed intersection. In study, we analyze 1068 publications within IE–AI domain using trend factor analysis, word2vec modeling, top2vec modeling. These methods uncover patterns topic interconnections evolutionary trends. Our results 71 trending terms selected publications, 69 which, such as “deep learning,” emerged past 8 years. analysis shows that application various AI techniques increasingly integrated into life cycle assessment circular economy. suggests employing predict optimize indicators related products, waste, processes, their environmental impacts an emerging trend. Lastly, propose fine‐tuning large language models better understand process data specific IE, along with deploying real‐time collection technologies sensors, computer vision, robotics, could effectively address challenges data‐driven decision‐making domain.

Язык: Английский

Процитировано

0