Applied Thermal Engineering, Год журнала: 2023, Номер 232, С. 121009 - 121009
Опубликована: Июнь 17, 2023
Язык: Английский
Applied Thermal Engineering, Год журнала: 2023, Номер 232, С. 121009 - 121009
Опубликована: Июнь 17, 2023
Язык: Английский
Applied Thermal Engineering, Год журнала: 2023, Номер 237, С. 121529 - 121529
Опубликована: Сен. 6, 2023
Язык: Английский
Процитировано
43Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Июль 31, 2024
Climate change affects plant growth, food production, ecosystems, sustainable socio-economic development, and human health. The different artificial intelligence models are proposed to simulate climate parameters of Jinan city in China, include neural network (ANN), recurrent NN (RNN), long short-term memory (LSTM), deep convolutional (CNN), CNN-LSTM. These used forecast six climatic factors on a monthly ahead. data for 72 years (1 January 1951–31 December 2022) this study average atmospheric temperature, extreme minimum maximum precipitation, relative humidity, sunlight hours. time series 12 month delayed as input signals the models. efficiency examined utilizing diverse evaluation criteria namely mean absolute error, root square error (RMSE), correlation coefficient (R). modeling result inherits that hybrid CNN-LSTM model achieves greater accuracy than other compared significantly reduces forecasting one step For instance, RMSE values ANN, RNN, LSTM, CNN, temperature stage 2.0669, 1.4416, 1.3482, 0.8015 0.6292 °C, respectively. findings simulations shows potential improve forecasting. prediction will contribute meteorological disaster prevention reduction, well flood control drought resistance.
Язык: Английский
Процитировано
25Industrial & Engineering Chemistry Research, Год журнала: 2025, Номер unknown
Опубликована: Янв. 3, 2025
Using detailed chemical kinetic models in CFD simulations of multiphase reactors is challenging. Detailed include radical species that span a wide range time scales, making the resulting system ODEs stiff. Solving large, stiff puts severe constraint on step, such impractical even for lab-scale reactors. Moreover, are difficult to converge. For this reason, most reactor rely global kinetics, when scheme available. This work targets problem, considering biomass thermochemical conversion at 1073–1273 K fluidized bed as an application. To end, gated recurrent unit (GRU) based neural network (RNN) model developed predict reactants and product evolution along length. Biomass devolatilization gas-phase chemistries represented by schemes comprising 20 with 24 reactions 39 118 reactions, respectively. A consisting ideal used generate training data. comprehensive compositions operating conditions used, ensuring applicability. The machine learning assessed against unseen test data CFD-DEM reactor. computational cost reduced 10 orders magnitude using GRU-based RNN model.
Язык: Английский
Процитировано
2Applied Energy, Год журнала: 2023, Номер 342, С. 121099 - 121099
Опубликована: Апрель 26, 2023
Язык: Английский
Процитировано
38Digital Chemical Engineering, Год журнала: 2023, Номер 8, С. 100103 - 100103
Опубликована: Май 16, 2023
The thermochemical conversion of biomass is a promising technology due to its cost-effectiveness and feedstock flexibility, with pyrolysis being particularly noteworthy method for diverse product range. Despite the potential pyrolysis, commercialization remains elusive, there growing need fully understand dynamics facilitate process scaling up. However, waste complex, time-consuming, capital-intensive. Machine Learning (ML) has emerged as possible means supporting accelerating research despite these challenges. This study provides comprehensive overview use ML in from biorefinery end-of-life management. In addition, success optimization control, predicting yield, real-time monitoring, life-cycle assessment (LCA), techno-economic analysis (TEA) during highlighted. Several methods have been utilized bid pyrolysis; potentiality artificial neural networks (ANNs) learn extremely non-linear input-output correlations led widespread adoption networks. Furthermore, current knowledge gaps future recommendations application are identified. Finally, this demonstrates development well scalability biomass.
Язык: Английский
Процитировано
36Energy, Год журнала: 2023, Номер 280, С. 128138 - 128138
Опубликована: Июнь 24, 2023
Язык: Английский
Процитировано
27Process Safety and Environmental Protection, Год журнала: 2023, Номер 176, С. 438 - 449
Опубликована: Июнь 15, 2023
Язык: Английский
Процитировано
23Chemical Engineering Journal, Год журнала: 2024, Номер 492, С. 152335 - 152335
Опубликована: Май 18, 2024
Язык: Английский
Процитировано
14Journal of Analytical and Applied Pyrolysis, Год журнала: 2024, Номер 179, С. 106486 - 106486
Опубликована: Март 30, 2024
Bio-oil produced through pyrolysis of lignocellulosic biomass has recently received significant attention due to its possible uses as a second-generation biofuel. The yield and characteristics bio-oil are affected by reaction conditions the type feedstock that is used. Recently, machine learning (ML) techniques have been widely employed forecast performance bi-oil. In this study, comprehensive review ML research on carried out. Regression methods were most frequently build prediction models top five for random forest, artificial neural network, gradient boosting, support vector regression, linear regression. results developed quite consistent with experiment results. However, studies data had limitations such used restricted data, extraction features using their own knowledge, limited algorithms. We highlighted challenges potential cutting-edge in production.
Язык: Английский
Процитировано
10Powder Technology, Год журнала: 2024, Номер 439, С. 119668 - 119668
Опубликована: Март 16, 2024
Язык: Английский
Процитировано
8