Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2023, Номер 904, С. 166960 - 166960
Опубликована: Сен. 9, 2023
Язык: Английский
Процитировано
49Environmental Technology & Innovation, Год журнала: 2024, Номер 35, С. 103655 - 103655
Опубликована: Май 5, 2024
Forest fires pose a significant threat to ecosystems and socio-economic activities, necessitating the development of accurate predictive models for effective management mitigation. In this study, we present novel machine learning approach combined with Explainable Artificial Intelligence (XAI) techniques predict forest fire susceptibility in Nainital district. Our innovative methodology integrates several robust — AdaBoost, Gradient Boosting Machine (GBM), XGBoost Random Deep Neural Network (DNN) as meta-model stacking framework. This not only utilises individual strengths these models, but also improves overall prediction performance reliability. By using XAI techniques, particular SHAP (SHapley Additive exPlanations) LIME (Local Interpretable Model-agnostic Explanations), improve interpretability provide insights into decision-making processes. results show effectiveness ensemble model categorising different zones: very low, moderate, high high. particular, identified extensive areas susceptibility, precision, recall F1 values underpinning their effectiveness. These achieved ROC AUC above 0.90, performing exceptionally well an 0.94. The are remarkably inclusion confidence intervals most important metrics all emphasises robustness reliability supports practical use management. Through summary plots, analyze global variable importance, revealing annual rainfall Evapotranspiration (ET) key factors influencing susceptibility. Local analysis consistently highlights importance rainfall, ET, distance from roads across models. study fills research gap by providing comprehensive interpretable modelling that our ability effectively manage risk is consistent environmental protection sustainable goals.
Язык: Английский
Процитировано
24Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(22), С. 32480 - 32493
Опубликована: Апрель 24, 2024
Язык: Английский
Процитировано
5Environmental Science and Pollution Research, Год журнала: 2024, Номер 31(30), С. 42948 - 42969
Опубликована: Июнь 17, 2024
Язык: Английский
Процитировано
5Environmental Research, Год журнала: 2024, Номер 251, С. 118460 - 118460
Опубликована: Фев. 20, 2024
Язык: Английский
Процитировано
4Journal of Environmental Management, Год журнала: 2025, Номер 376, С. 124523 - 124523
Опубликована: Фев. 16, 2025
Rapid urbanization and climate change exacerbate soil erosion globally, threatening ecosystem services sustainable development. However, current predictive studies on future often lack comprehensive consideration of the interactions between land use change. This study proposed a scenario analysis framework that integrated four Shared Socioeconomic Pathways (SSPs) from CMIP6 with bespoke land-use scenarios (Inertial Development (IDS), Urban Priority (UDPS), Ecological Protection (EPPS), Farmland (FPPS)) to create 16 scenarios, allowing for more nuanced understanding potential trajectories. The results indicated (1) compared baseline period (2000-2020), in Central Yunnan Agglomeration (CYUA) would improve, albeit significant differences among scenarios. most notable improvement was under EPPS + SSP1-2.6 (ScC1). (2) lower Jinsha, upper Nanpan, Red river basins were high-risk areas CYUA, each dominated by different factors, necessitating differentiated control measures. (3) Land-use jointly influenced direction development, lightest occurring heaviest FPPS. largest decrease occurs SSP1-2.6, whereas smallest SSP5-8.5. (4) Climate had impact than change, reduction rates modulus area relative past 20 years being 9% 3.77%, respectively, approximately eight times magnitude recommends reducing carbon emissions, enhancing vegetation cover, controlling slope development effectively mitigate risk CYUA promote regional method provides new insights into global small-scale predictions.
Язык: Английский
Процитировано
0CATENA, Год журнала: 2025, Номер 254, С. 108959 - 108959
Опубликована: Март 23, 2025
Язык: Английский
Процитировано
0Advances in Space Research, Год журнала: 2025, Номер unknown
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0DELETED, Год журнала: 2024, Номер 90(4), С. 1049 - 1066
Опубликована: Май 10, 2024
In this study the morphometric indices of Pahuj river basin (PRB) were evaluated by applying remote sensing and GIS. The Shuttle Radar Topographic Mission (SRTM) based 30 m digital elevation (DEM) data was used in order to extract parameters using standard methods. PRB covering an area (3648 km2) is controlled homogenous lithology geological structures. drainage density indicates that permeable soil with coarse texture dominantly occurring large low-lying flat areas basin. Contrary high gradient consist impermeable hard granitic rocks Neoarchean Precambrian age a low quantity soil. value elongation ratio form factor reveal elongated show peak flows. To assess erosion susceptibility, attributes Revised Universal Soil Loss Equation (RUSLE) model integrated GIS estimate loss from results rainfall erosivity (R-factor) along pattern indicate upper catchment relatively exhibits intensity than middle lower region. findings (R), erodibility (K), topographic (LS), crop management (C) factors infer quite area. ruggedness number Melton (4.16) imply moderately rugged less prone erosion, particularly relief effective practices water conservation will enhance storage capacity prevent sediment PRB. research may be helpful resolve crisis can such drought-prone
Язык: Английский
Процитировано
2Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122916 - 122916
Опубликована: Окт. 15, 2024
Язык: Английский
Процитировано
2