Developing an efficient explainable artificial intelligence approach for accurate reverse osmosis desalination plant performance prediction: application of SHAP analysis DOI Creative Commons
Meysam Alizamir, Mo Wang, Rana Muhammad Adnan Ikram

и другие.

Engineering Applications of Computational Fluid Mechanics, Год журнала: 2024, Номер 18(1)

Опубликована: Ноя. 6, 2024

In recent decades, securing drinkable water sources has become a pressing concern for populations in various regions worldwide. Therefore, to address the growing need potable water, contemporary purification technologies can be employed convert saline into supplies. prediction of important parameters desalination plants is key task designing and implementing these facilities. this regard, artificial intelligence techniques have proven powerful assets field. These methods offer an expedited effective means estimating parameters, thus catalyzing their implementation real-world scenarios. study, predictive accuracy six different machine learning models, including Natural Gradient-based Boosting (NGBoost), Adaptive (AdaBoost), Categorical (CatBoost), Support vector regression (SVR), Gaussian Process Regression (GPR), Extremely Randomized Tree (ERT) was evaluated modelling parameter permeate flow as element system efficiency, energy consumption, quality using input combinations feed salt concentration, condenser inlet temperature, rate, evaporator temperature. The next phase research SHAP interpretability method illustrate impact individual variables on model's output. Moreover, performance developed frameworks set five dependable statistical measures: RMSE, NS, MAE, MAPE R2. indicators were utilized provide robust gauging precision forecasts. A comparative analysis outcomes, measured by RMSE criteria, revealed that SVR technique (RMSE = 0.125 L/(h·m2)) exhibited superior compared NGBoost 0.163 L/(h·m2)), AdaBoost 0.219 CatBoost 0.149 GPR 0.156 ERT 0.167 methodologies predicting rates. outcomes obtained during evaluation stage demonstrated efficacy algorithm enhancing forecasts, utilizing relevant variables.

Язык: Английский

Predicting existing tunnel deformation from adjacent foundation pit construction using hybrid machine learning DOI

Xianguo Wu,

Zongbao Feng, Jun Liu

и другие.

Automation in Construction, Год журнала: 2024, Номер 165, С. 105516 - 105516

Опубликована: Июнь 11, 2024

Язык: Английский

Процитировано

27

Multisource information fusion for real-time prediction and multiobjective optimization of large-diameter slurry shield attitude DOI

Xianguo Wu,

Jingyi Wang, Zongbao Feng

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 250, С. 110305 - 110305

Опубликована: Июнь 24, 2024

Язык: Английский

Процитировано

16

Application of hybrid machine learning algorithm in multi-objective optimization of green building energy efficiency DOI
Yi Zhu, Wen Xu, Wenhong Luo

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 133581 - 133581

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

5

Assessment of the vulnerability of urban metro to rainstorms based on improved cloud model and evidential reasoning DOI
Hongyu Chen, Qiping Shen, Zongbao Feng

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 157, С. 106353 - 106353

Опубликована: Янв. 2, 2025

Язык: Английский

Процитировано

2

Enhancing the performance of recycled aggregate green concrete via a Bayesian optimization light gradient boosting machine and the nondominated sorting genetic algorithm-III DOI
Hongyu Chen, Yue Cheng,

Ting Du

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 458, С. 139527 - 139527

Опубликована: Дек. 20, 2024

Язык: Английский

Процитировано

9

Analysis of influencing factors and carbon emission scenario prediction during building operation stage DOI
Wenhong Luo, Weicheng Liu, Wenlong Liu

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 134401 - 134401

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Performance of concrete under a low-pressure environment DOI

Xiaorui Liu,

Zheng Si,

Lingzhi Huang

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 461, С. 139862 - 139862

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Optimization of energy-saving retrofit solutions for existing buildings: A multidimensional data fusion approach DOI
Hongyu Chen, Qiping Shen, Zongbao Feng

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2024, Номер 201, С. 114630 - 114630

Опубликована: Июнь 7, 2024

Язык: Английский

Процитировано

4

Dynamic Evaluation of the Safety Risk During Shield Construction near Existing Tunnels via a Pair Copula Bayesian Network DOI
Hongyu Chen, Lei Yu,

Lingyu Xia

и другие.

Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112583 - 112583

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

4

Application of hybrid machine learning algorithms for life cycle carbon prediction and optimization of buildings: A case study in China DOI
Hongyu Chen, Jingyi Wang,

Qiping Geoffrey Shen

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер 122, С. 106248 - 106248

Опубликована: Фев. 25, 2025

Язык: Английский

Процитировано

0