Assessing landslide susceptibility using a machine learning-based approach to achieving land degradation neutrality DOI
Yacine Achour,

Zahra Saïdani,

Rania Touati

и другие.

Environmental Earth Sciences, Год журнала: 2021, Номер 80(17)

Опубликована: Авг. 18, 2021

Язык: Английский

Performance evaluation of convolutional neural network and vision transformer models for groundwater potential mapping DOI
Behnam Sadeghi, Ali Asghar Alesheikh,

Ali Jafari

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132840 - 132840

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Determining prone areas to gully erosion and the impact of land use change on it by using multiple-criteria decision-making algorithm in arid and semi-arid regions DOI

Marzieh Mokarram,

Abdol Rassoul Zarei

Geoderma, Год журнала: 2021, Номер 403, С. 115379 - 115379

Опубликована: Авг. 9, 2021

Язык: Английский

Процитировано

52

Bagging-based machine learning algorithms for landslide susceptibility modeling DOI
Tingyu Zhang, Quan Fu, Hao Wang

и другие.

Natural Hazards, Год журнала: 2021, Номер 110(2), С. 823 - 846

Опубликована: Авг. 21, 2021

Язык: Английский

Процитировано

50

Drought risk assessment: integrating meteorological, hydrological, agricultural and socio-economic factors using ensemble models and geospatial techniques DOI
Alireza Arabameri, Subodh Chandra Pal,

M. Santosh

и другие.

Geocarto International, Год журнала: 2021, Номер 37(21), С. 6087 - 6115

Опубликована: Июнь 25, 2021

Among natural disasters, drought hits almost half of the world every year, regardless climatic zones. Identifying vulnerability regions is fundamental to plan and adopt mitigation measures. Here we apply a multi-criteria-based machine learning technique that integrates spatial data for preparing map different categories. We adopted remote sensing tools with three models namely support vector (SVM), random forest (RF) regression (SVR) their ensembles (i.e. Bagging, Boosting Stacking), as applied northwestern part Iran case study. Various types geo-environmental factors were considered including meteorological, hydrological, agricultural socio-economic. The result model was evaluated through arithmetic logic values (area under curve [AUC]) receiver operating (ROC). Through multi-collinearity test, prominent causative occurrences are defined. AUC value from ROC SVR-Stacking, RF-Stacking SVM-Stacking training datasets 0.942, 0.918 0.896, respectively. SVR-Stacking yielded best (AUC = 0.94) confirming SVR serves robust preparation susceptibility maps can be used by governmental other administrative agencies.

Язык: Английский

Процитировано

48

Assessing landslide susceptibility using a machine learning-based approach to achieving land degradation neutrality DOI
Yacine Achour,

Zahra Saïdani,

Rania Touati

и другие.

Environmental Earth Sciences, Год журнала: 2021, Номер 80(17)

Опубликована: Авг. 18, 2021

Язык: Английский

Процитировано

47