Environmental Earth Sciences, Год журнала: 2021, Номер 80(17)
Опубликована: Авг. 18, 2021
Язык: Английский
Environmental Earth Sciences, Год журнала: 2021, Номер 80(17)
Опубликована: Авг. 18, 2021
Язык: Английский
Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132840 - 132840
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Geoderma, Год журнала: 2021, Номер 403, С. 115379 - 115379
Опубликована: Авг. 9, 2021
Язык: Английский
Процитировано
52Natural Hazards, Год журнала: 2021, Номер 110(2), С. 823 - 846
Опубликована: Авг. 21, 2021
Язык: Английский
Процитировано
50Geocarto International, Год журнала: 2021, Номер 37(21), С. 6087 - 6115
Опубликована: Июнь 25, 2021
Among natural disasters, drought hits almost half of the world every year, regardless climatic zones. Identifying vulnerability regions is fundamental to plan and adopt mitigation measures. Here we apply a multi-criteria-based machine learning technique that integrates spatial data for preparing map different categories. We adopted remote sensing tools with three models namely support vector (SVM), random forest (RF) regression (SVR) their ensembles (i.e. Bagging, Boosting Stacking), as applied northwestern part Iran case study. Various types geo-environmental factors were considered including meteorological, hydrological, agricultural socio-economic. The result model was evaluated through arithmetic logic values (area under curve [AUC]) receiver operating (ROC). Through multi-collinearity test, prominent causative occurrences are defined. AUC value from ROC SVR-Stacking, RF-Stacking SVM-Stacking training datasets 0.942, 0.918 0.896, respectively. SVR-Stacking yielded best (AUC = 0.94) confirming SVR serves robust preparation susceptibility maps can be used by governmental other administrative agencies.
Язык: Английский
Процитировано
48Environmental Earth Sciences, Год журнала: 2021, Номер 80(17)
Опубликована: Авг. 18, 2021
Язык: Английский
Процитировано
47