The Science of The Total Environment, Год журнала: 2023, Номер 868, С. 161543 - 161543
Опубликована: Янв. 11, 2023
Язык: Английский
The Science of The Total Environment, Год журнала: 2023, Номер 868, С. 161543 - 161543
Опубликована: Янв. 11, 2023
Язык: Английский
Chemical Engineering Journal, Год журнала: 2023, Номер 467, С. 143483 - 143483
Опубликована: Май 15, 2023
Язык: Английский
Процитировано
64Journal of Cleaner Production, Год журнала: 2023, Номер 405, С. 137019 - 137019
Опубликована: Март 31, 2023
Estimating wastewater treatment plants' (WWTPs) influent parameters such as 5-day biological oxygen demand (BOD5) and chemical (COD) is vital for optimizing electricity energy consumption. Against this backdrop, the existing body of knowledge bereft a study employing Artificial Intelligence-based techniques prediction BOD5 COD. Thus, in study, Gene expression programming (GEP), multilayer perception neural networks, multi-linear regression, k-nearest neighbors, gradient boosting, regression trees -based models were trained predicting COD, using monthly data collected from inflow 7 WWTPs over three-year period Hong Kong. Based on different statistical parameters, GEP provides more accurate estimations, with R2 values 0.784 0.861 COD respectively. Furthermore, results sensitivity analysis undertaken by monte Carlo simulation revealed that both mostly affected concentrations total suspended solids, 10% increase value TSS resulted 7.94% 7.92% It seen modeling complied fundamental chemistry quality can be further applied other sewage sources industrial leachate. The promising obtained pave way forecasting operational during sludge processing, leading to an extensive savings processes.
Язык: Английский
Процитировано
56Environmental Research, Год журнала: 2023, Номер 224, С. 115560 - 115560
Опубликована: Фев. 25, 2023
Язык: Английский
Процитировано
37Frontiers of Environmental Science & Engineering, Год журнала: 2023, Номер 17(8)
Опубликована: Март 13, 2023
Язык: Английский
Процитировано
26ACS ES&T Water, Год журнала: 2024, Номер 4(4), С. 1904 - 1915
Опубликована: Апрель 2, 2024
Models are increasingly being utilized to improve the understanding and operation of wastewater treatment plants (WWTPs) in face escalating water resource challenges. Abundant operational data provide extensive opportunities for development machine learning (ML) deep (DL) models. However, coupling time lag among features exacerbate black-box nature such models, hindering their application WWTPs. In this study, we construct a DL model using long short-term memory (LSTM) algorithm capable accurately predicting effluent quality full-scale WWTP with finely tuned hyperparameters rationally chosen input features. Comprehensive explanation based on Shapley additive explanations (SHAP) is implemented clarify contributions multivariate series (MTS) inputs predicted results terms feature dimensions. The LSTM models exhibit excellent accuracy (R2 0.96, 0.95, 0.76 MAPE 5.49, 7.17, 13.37%, respectively) chemical oxygen demand (COD), total phosphorus (TP), nitrogen (TN) better than other baseline ML SHAP quantify what most important when they exert influence how impact results. analysis from temporal dimension further explains characteristics process justifies introduction MTS. Compared correlation without engineering, selection method by significantly enhances predictive accuracy. combinations adjusted values, strong interactions significant output identified. This novel attempt both explainability MTS prediction work shows potential applying WWTPs performance.
Язык: Английский
Процитировано
9Journal of Water Process Engineering, Год журнала: 2024, Номер 61, С. 105212 - 105212
Опубликована: Апрель 11, 2024
Язык: Английский
Процитировано
9Journal of Cleaner Production, Год журнала: 2024, Номер 437, С. 140679 - 140679
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
8Environmental Research, Год журнала: 2022, Номер 211, С. 113054 - 113054
Опубликована: Март 9, 2022
Язык: Английский
Процитировано
33ACS ES&T Engineering, Год журнала: 2022, Номер 3(3), С. 360 - 372
Опубликована: Дек. 15, 2022
The indirect carbon emission from electrical consumption of wastewater treatment plants (WWTPs) accounts for large proportions their total emissions, which deserves intensive attention. This work proposed an automated machine learning (AutoML)-based analysis (ACIA) approach and predicted the specific (SEe; kg CO2/m3) successfully in nine full-scale WWTPs (W1–W9) with different configurations based on historical operational data. stacked ensemble models generated by AutoML accurately SEe (mean absolute error = 0.02232–0.02352, R2 0.65107–0.67509). Then, variable importance Shapley additive explanations (SHAP) summary plots qualitatively revealed that influent volume types secondary tertiary processes were most important variables associated prediction. interpretation results partial dependence individual conditional expectation further verified quantitative relationships between input SEe. Also, low energy efficiency high was distinguished. Compared traditional prediction methods, ACIA method could evaluate predict scales easily available reveal qualitative inside datasets simultaneously, is a powerful tool to benefit "carbon neutrality" WWTPs.
Язык: Английский
Процитировано
30Journal of Environmental Management, Год журнала: 2023, Номер 341, С. 118116 - 118116
Опубликована: Май 10, 2023
Язык: Английский
Процитировано
19