Advancements in machine learning modelling for energy and emissions optimization in wastewater treatment plants: A systematic review DOI
Taher Abunama,

Antoine Dellieu,

S. Nonet

и другие.

Water and Environment Journal, Год журнала: 2024, Номер 38(4), С. 554 - 572

Опубликована: Июль 8, 2024

Abstract Wastewater treatment plants (WWTPs) are high‐energy consumers and major Greenhouse Gas (GHG) emitters. This review offers a comprehensive global overview of the current utilization machine learning (ML) to optimize energy usage reduce emissions in WWTPs. It compiles analyses findings from over hundred studies primarily conducted within last decade. These organized into five primary areas: consumption (EC), aeration (AE), pumping (PE), sludge (STE) greenhouse gas (GHG). Additionally, they further categorized based on type, scale application, geographic location, year, performance metrics, software, etc. ANNs emerged as most prevalent, closely trailed by FL RF. While GA PSO predominant metaheuristic approaches. Despite increasing complexity, researchers inclined towards employing hybrid models enhance performance. Reported reductions or GHG spanned various ranges, falling 0–10%, 10–20% >20% brackets.

Язык: Английский

Calculation of carbon emissions in wastewater treatment and its neutralization measures: A review DOI
Zhixin Liu, Ziyi Xu, Xiaolei Zhu

и другие.

The Science of The Total Environment, Год журнала: 2023, Номер 912, С. 169356 - 169356

Опубликована: Дек. 16, 2023

Язык: Английский

Процитировано

75

Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods DOI
Gang Ye, Jinquan Wan,

Zhicheng Deng

и другие.

Bioresource Technology, Год журнала: 2024, Номер 395, С. 130361 - 130361

Опубликована: Янв. 28, 2024

Язык: Английский

Процитировано

21

A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant DOI
Yifan Xie, Y. Chen, Qing Wei

и другие.

Water Research, Год журнала: 2023, Номер 250, С. 121092 - 121092

Опубликована: Дек. 29, 2023

Язык: Английский

Процитировано

25

Optimization of a Novel Engineered Ecosystem Integrating Carbon, Nitrogen, Phosphorus, and Sulfur Biotransformation for Saline Wastewater Treatment Using an Interpretable Machine Learning Approach DOI
Jinqi Jiang,

Xiang Xiang,

Qinhao Zhou

и другие.

Environmental Science & Technology, Год журнала: 2024, Номер 58(29), С. 12989 - 12999

Опубликована: Июль 10, 2024

The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), (P), and S biotransformation. However, operational instability arises due to the numerous parameters intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach predict conversion-driven P efficiency optimize DS-EBPR process. Stage one utilized XGBoost regression model, achieving an

Язык: Английский

Процитировано

14

Machine learning-based prediction of biological oxygen demand and unit electricity consumption in different-scale wastewater treatment plants DOI
Gang Ye, Jinquan Wan,

Zhicheng Deng

и другие.

Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(2), С. 111849 - 111849

Опубликована: Янв. 28, 2024

Язык: Английский

Процитировано

8

Urbanization and greenhouse gas emissions from municipal wastewater in coastal provinces of China: Spatiotemporal patterns, driving factors, and mitigation strategies DOI
Qibiao Yu, Shaobin Li, Nengwang Chen

и другие.

Environmental Research, Год журнала: 2024, Номер 259, С. 119398 - 119398

Опубликована: Июнь 27, 2024

Язык: Английский

Процитировано

8

Carbon emissions, wastewater treatment and aquatic ecosystems DOI
Fan Yang, Xiong Xiong

The Science of The Total Environment, Год журнала: 2024, Номер 921, С. 171138 - 171138

Опубликована: Фев. 23, 2024

Язык: Английский

Процитировано

7

Novel Intelligent System Based on Automated Machine Learning for Multiobjective Prediction and Early Warning Guidance of Biogas Performance in Industrial-Scale Garage Dry Fermentation DOI
Yi Zhang,

Yun Zhao,

Yijing Feng

и другие.

ACS ES&T Engineering, Год журнала: 2023, Номер 4(1), С. 139 - 152

Опубликована: Май 26, 2023

Industrial-scale garage dry fermentation systems are extremely nonlinear, and traditional machine learning algorithms have low prediction accuracy. Therefore, this study presents a novel intelligent system that employs two automated (AutoML) (AutoGluon H2O) for biogas performance Shapley additive explanation (SHAP) interpretable analysis, along with multiobjective particle swarm optimization (MOPSO) early warning guidance of industrial-scale fermentation. The stacked ensemble models generated by AutoGluon the highest accuracy digester percolate tank performances. Based on optimal parameter combinations were determined in order to maximize production CH4 content. conditions involve maintaining temperature range 35–38 °C, implementing daily spray time approximately 10 min pressure 1000 Pa, utilizing feedstock high total solids Additionally, should be maintained at liquid level 1500 mm, pH 8.0–8.1, inorganic carbon concentration greater than 13.8 g/L. software developed based was successfully validated warning, MOPSO-recommended provided. In conclusion, described could accurately predict guide operating condition optimization, paving way next generation industrial systems.

Язык: Английский

Процитировано

15

Prediction of biological nutrients removal in full-scale wastewater treatment plants using H2O automated machine learning and back propagation artificial neural network model: Optimization and comparison DOI
Jingyang Luo, Yuting Luo,

Xiaoshi Cheng

и другие.

Bioresource Technology, Год журнала: 2023, Номер 390, С. 129842 - 129842

Опубликована: Окт. 10, 2023

Язык: Английский

Процитировано

12

Study on Carbon Emission Influencing Factors and Carbon Emission Reduction Potential in China's Food Production Industry DOI
Yuanping Wang, Lang Hu, Lingchun Hou

и другие.

Environmental Research, Год журнала: 2024, Номер 261, С. 119702 - 119702

Опубликована: Июль 31, 2024

Язык: Английский

Процитировано

4