Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(60), С. 126116 - 126131
Опубликована: Ноя. 27, 2023
Язык: Английский
Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(60), С. 126116 - 126131
Опубликована: Ноя. 27, 2023
Язык: Английский
Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Июль 16, 2024
Abstract In regions like Oman, which are characterized by aridity, enhancing the water quality discharged from reservoirs poses considerable challenges. This predicament is notably pronounced at Wadi Dayqah Dam (WDD), where meeting demand for ample, superior downstream proves to be a formidable task. Thus, accurately estimating and mapping indicators (WQIs) paramount sustainable planning of inland in study area. Since traditional procedures collect data time-consuming, labor-intensive, costly, resources management has shifted gathering field measurement utilizing remote sensing (RS) data. WDD been threatened various driving forces recent years, such as contamination different sources, sedimentation, nutrient runoff, salinity intrusion, temperature fluctuations, microbial contamination. Therefore, this aimed retrieve map WQIs, namely dissolved oxygen (DO) chlorophyll-a (Chl-a) (WDD) reservoir Sentinel-2 (S2) satellite using new procedure weighted averaging, Bayesian Maximum Entropy-based Fusion (BMEF). To do so, outputs four Machine Learning (ML) algorithms, Multilayer Regression (MLR), Random Forest (RFR), Support Vector (SVRs), XGBoost, were combined approach together, considering uncertainty. Water samples 254 systematic plots obtained (T), electrical conductivity (EC), (Chl-a), pH, oxidation–reduction potential (ORP), WDD. The findings indicated that, throughout both training testing phases, BMEF model outperformed individual machine learning models. Considering Chl-a, WQI, R-squared, evaluation indices, MLR, SVR, RFR, XGBoost 6%, 9%, 2%, 7%, respectively. Furthermore, results significantly enhanced when best combination spectral bands was considered estimate specific WQIs instead all S2 input variables ML algorithms.
Язык: Английский
Процитировано
8Chemical Engineering Science, Год журнала: 2025, Номер unknown, С. 121293 - 121293
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Journal of Environmental Management, Год журнала: 2025, Номер 380, С. 124971 - 124971
Опубликована: Март 20, 2025
Язык: Английский
Процитировано
1Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(8), С. 3177 - 3198
Опубликована: Май 13, 2024
Язык: Английский
Процитировано
6Journal of Environmental Management, Год журнала: 2024, Номер 364, С. 121466 - 121466
Опубликована: Июнь 12, 2024
Язык: Английский
Процитировано
6Buildings, Год журнала: 2024, Номер 14(3), С. 641 - 641
Опубликована: Фев. 29, 2024
Unconfined compressive strength (UCS) is an important parameter of rock and soil mechanical behavior in foundation engineering design construction. In this study, salinized frozen selected as the research object, GDS tests, ultrasonic scanning electron microscopy (SEM) tests are conducted. Based on classification method model parameters, 2 macroscopic 38 mesoscopic 19 microscopic parameters selected. A machine learning used to predict considering three-level characteristic parameters. Four accuracy evaluation indicators evaluate six models. The results show that radial basis function (RBF) has best UCS predictive performance for both training testing stages. terms acceptable stability loss, through analysis gray correlation rough set total amount proportion optimized so there 2, 16, 16 macro, meso, micro a sequence, respectively. simulation aforementioned models with RBF still performs optimally. addition, after optimization, sensitivity third-level more reasonable. proved be effective predicting UCS. This study improves prediction ability by classifying optimizing provides useful reference future salty seasonally regions.
Язык: Английский
Процитировано
5Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102665 - 102665
Опубликована: Июнь 24, 2024
Язык: Английский
Процитировано
4Ecotoxicology and Environmental Safety, Год журнала: 2024, Номер 289, С. 117499 - 117499
Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
4The Science of The Total Environment, Год журнала: 2024, Номер 954, С. 176256 - 176256
Опубликована: Сен. 20, 2024
Язык: Английский
Процитировано
3Stochastic Environmental Research and Risk Assessment, Год журнала: 2025, Номер unknown
Опубликована: Фев. 28, 2025
Язык: Английский
Процитировано
0