Environmental Modelling & Software, Год журнала: 2024, Номер 185, С. 106290 - 106290
Опубликована: Дек. 9, 2024
Язык: Английский
Environmental Modelling & Software, Год журнала: 2024, Номер 185, С. 106290 - 106290
Опубликована: Дек. 9, 2024
Язык: Английский
Journal of Environmental Management, Год журнала: 2024, Номер 369, С. 122275 - 122275
Опубликована: Авг. 31, 2024
Язык: Английский
Процитировано
11Journal of Hydrology, Год журнала: 2024, Номер 636, С. 131250 - 131250
Опубликована: Апрель 28, 2024
Язык: Английский
Процитировано
9Water, Год журнала: 2024, Номер 16(22), С. 3328 - 3328
Опубликована: Ноя. 19, 2024
Assessing diverse parameters like water quality, quantity, and occurrence of hydrological extremes their management is crucial to perform efficient resource (WRM). A successful WRM strategy requires a three-pronged approach: monitoring historical data, predicting future trends, taking controlling measures manage risks ensure sustainability. Artificial intelligence (AI) techniques leverage these knowledge fields single theme. This review article focuses on the potential AI in two specific areas: supply-side demand-side measures. It includes investigation applications leak detection infrastructure maintenance, demand forecasting supply optimization, treatment desalination, quality pollution control, parameter calibration optimization applications, flood drought predictions, decision support systems. Finally, an overview selection appropriate suggested. The nature adoption investigated using Gartner hype cycle curve indicated that learning application has advanced different stages maturity, big data reach plateau productivity. also delineates pathways expedite integration AI-driven solutions harness transformative capabilities for protection global resources.
Язык: Английский
Процитировано
6Water Resources Management, Год журнала: 2024, Номер unknown
Опубликована: Сен. 25, 2024
Язык: Английский
Процитировано
5Remote Sensing, Год журнала: 2025, Номер 17(3), С. 365 - 365
Опубликована: Янв. 22, 2025
Floods, increasingly exacerbated by climate change, are among the most destructive natural disasters globally, necessitating advancements in long-term forecasting to improve risk management. Traditional models struggle with complex dependencies of hydroclimatic variables and environmental conditions, thus limiting their reliability. This study introduces a novel framework for enhancing flood accuracy integrating geo-spatiotemporal analyses, cascading dimensionality reduction, SageFormer-based multi-step-ahead predictions. The efficiently processes satellite-derived data, addressing curse focusing on critical long-range spatiotemporal dependencies. SageFormer captures inter- intra-dependencies within compressed feature space, making it particularly effective forecasting. Performance evaluations against LSTM, Transformer, Informer across three data fusion scenarios reveal substantial improvements accuracy, especially data-scarce basins. integration hydroclimate attention-based networks reduction demonstrates significant over traditional approaches. proposed combines advanced deep learning, both interpretability precision capturing By offering straightforward reliable approach, this advances remote sensing applications hydrological modeling, providing robust tool mitigating impacts extremes.
Язык: Английский
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2025, Номер 232, С. 110129 - 110129
Опубликована: Фев. 17, 2025
Язык: Английский
Процитировано
0Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133097 - 133097
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Ocean Engineering, Год журнала: 2024, Номер 313, С. 119335 - 119335
Опубликована: Сен. 28, 2024
Язык: Английский
Процитировано
2Journal of Cleaner Production, Год журнала: 2024, Номер 444, С. 141266 - 141266
Опубликована: Фев. 13, 2024
Язык: Английский
Процитировано
1Environmental Modelling & Software, Год журнала: 2024, Номер 185, С. 106290 - 106290
Опубликована: Дек. 9, 2024
Язык: Английский
Процитировано
1