
Engineering, Год журнала: 2024, Номер unknown
Опубликована: Авг. 1, 2024
Язык: Английский
Engineering, Год журнала: 2024, Номер unknown
Опубликована: Авг. 1, 2024
Язык: Английский
Computers & Industrial Engineering, Год журнала: 2024, Номер 189, С. 109950 - 109950
Опубликована: Фев. 5, 2024
Язык: Английский
Процитировано
7Journal of Manufacturing Systems, Год журнала: 2023, Номер 72, С. 263 - 286
Опубликована: Дек. 12, 2023
Язык: Английский
Процитировано
17Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 130, С. 107762 - 107762
Опубликована: Дек. 26, 2023
Язык: Английский
Процитировано
17Engineering Optimization, Год журнала: 2024, Номер 56(12), С. 2018 - 2039
Опубликована: Янв. 4, 2024
The energy crisis and environmental pollution are receiving increasing attention from governments communities. This study researches energy-aware remanufacturing systems. Remanufacturing aims to reuse valuable resources end-of-life products produce as-new products. Since systems involve a series of disassembly, processing assembly operations, schedule integrates shops. A multi-objective scheduling is proposed, considering workstation use, consumption customer satisfaction simultaneously. chance-constrained programming model established minimize makespan while satisfying total tardiness requirements. hybrid method developed, using group teaching optimization discrete event simulation system, which can seek evaluate potentially favourable solutions. approach validated on test instances well-known methods. results reveal that this find non-dominated solutions with well-converged well-diversified performance, verifying its advantages in providing informed decisions for managers engineers.
Язык: Английский
Процитировано
6IET Collaborative Intelligent Manufacturing, Год журнала: 2024, Номер 6(3)
Опубликована: Сен. 1, 2024
Abstract A hybrid flow shop is pivotal in modern manufacturing systems, where various emergencies and disturbances occur within the smart context. Efficiently solving dynamic scheduling problem (HFSP), characterised by release times, uncertain job processing flexible machine maintenance has become a significant research focus. NeuroEvolution of Augmenting Topologies (NEAT) algorithm proposed to minimise maximum completion time. To improve NEAT algorithm's efficiency effectiveness, several features were integrated: multi‐agent system with autonomous interaction centralised training develop parallel policy, maintenance‐related action for optimal decision learning, proactive avoid waiting jobs at moments, thereby exploring broader solution space. The performance trained model was experimentally compared Deep Q‐Network (DQN) five classical priority dispatching rules (PDRs) across scales. results show that achieves better solutions responds more quickly changes than DQN PDRs. Furthermore, generalisation test demonstrate NEAT's rapid problem‐solving ability on instances different from set.
Язык: Английский
Процитировано
4Electronics, Год журнала: 2024, Номер 13(18), С. 3696 - 3696
Опубликована: Сен. 18, 2024
The flexible job shop scheduling problem (FJSSP), which can significantly enhance production efficiency, is a mathematical optimization widely applied in modern manufacturing industries. However, due to its NP-hard nature, finding an optimal solution for all scenarios within reasonable time frame faces serious challenges. This paper proposes that transforms the FJSSP into Markov Decision Process (MDP) and employs deep reinforcement learning (DRL) techniques resolution. First, we represent state features of environment using seven feature vectors utilize transformer encoder as extraction module effectively capture relationships between representation capability. Second, based on jobs machines, design 16 composite dispatching rules from multiple dimensions, including completion rate, processing time, waiting resource utilization, achieve efficient decisions. Furthermore, project intuitive dense reward function with objective minimizing total idle machines. Finally, verify performance feasibility algorithm, evaluate proposed policy model Brandimarte, Hurink, Dauzere datasets. Our experimental results demonstrate framework consistently outperforms traditional rules, surpasses metaheuristic methods larger-scale instances, exceeds existing DRL-based across most
Язык: Английский
Процитировано
4Computers & Industrial Engineering, Год журнала: 2024, Номер unknown, С. 110735 - 110735
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
4Applied Soft Computing, Год журнала: 2025, Номер 170, С. 112697 - 112697
Опубликована: Янв. 6, 2025
Язык: Английский
Процитировано
0International Journal of Machine Learning and Cybernetics, Год журнала: 2025, Номер unknown
Опубликована: Янв. 12, 2025
Язык: Английский
Процитировано
0Swarm and Evolutionary Computation, Год журнала: 2025, Номер 94, С. 101885 - 101885
Опубликована: Фев. 21, 2025
Язык: Английский
Процитировано
0