
Engineering, Год журнала: 2024, Номер unknown
Опубликована: Авг. 1, 2024
Язык: Английский
Engineering, Год журнала: 2024, Номер unknown
Опубликована: Авг. 1, 2024
Язык: Английский
Journal of Manufacturing Systems, Год журнала: 2025, Номер 80, С. 794 - 823
Опубликована: Апрель 24, 2025
Язык: Английский
Процитировано
0Journal of Manufacturing Systems, Год журнала: 2025, Номер 80, С. 963 - 975
Опубликована: Май 4, 2025
Язык: Английский
Процитировано
0Computer Modeling in Engineering & Sciences, Год журнала: 2024, Номер 140(2), С. 1459 - 1483
Опубликована: Янв. 1, 2024
The distributed flexible job shop scheduling problem (DFJSP) has attracted great attention with the growth of global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor production, effective utilization resources can increase productivity.Meanwhile, energy consumption is a growing concern due to increasingly serious environmental issues.Therefore, dual resource (DFJSP-DRC) for minimizing makespan total studied in this paper.To solve problem, we present multi-objective mathematical model DFJSP-DRC propose Q-learning-based grey wolf optimizer (Q-MOGWO).In Q-MOGWO, high-quality initial solutions are generated by hybrid initialization strategy, an improved active decoding strategy designed obtain schemes.To further enhance local search capability expand solution space, two predation strategies three factory neighborhood structures based on Q-learning proposed.These enable Q-MOGWO explore space more efficiently thus find better Pareto solutions.The effectiveness addressing verified through comparison four algorithms using 45 instances.The results reveal that outperforms terms quality.
Язык: Английский
Процитировано
3Swarm and Evolutionary Computation, Год журнала: 2024, Номер 89, С. 101625 - 101625
Опубликована: Июнь 19, 2024
Язык: Английский
Процитировано
3Engineering, Год журнала: 2024, Номер unknown
Опубликована: Авг. 1, 2024
Язык: Английский
Процитировано
3