An Improved VAE-Based Quality Prediction Method with Application to a Hot Strip Rolling Mill Process DOI

Yundan Liu,

Kai Zhang, Xiaowen Zhang

и другие.

2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), Год журнала: 2024, Номер unknown, С. 783 - 788

Опубликована: Май 17, 2024

Язык: Английский

IoT-based framework for digital twins in steel production: A case study of key parameter prediction and optimization for CSR DOI
Jingdong Li,

Xiaochen Wang,

Quan Yang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 250, С. 123909 - 123909

Опубликована: Апрель 4, 2024

Язык: Английский

Процитировано

11

Explainable machine learning for predicting mechanical properties of hot-rolled steel pipe DOI
Jingdong Li, Youzhao Sun, Xiaochen Wang

и другие.

Journal of Iron and Steel Research International, Год журнала: 2025, Номер unknown

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

1

基于混合多阶集成模型的非平衡热轧带钢凸度智能诊断 DOI

Cheng-yan Ding,

Jie Sun, Xiaojian Li

и другие.

Journal of Central South University, Год журнала: 2024, Номер 31(3), С. 762 - 782

Опубликована: Март 1, 2024

Язык: Английский

Процитировано

6

An interpretable framework for high-precision flatness prediction in strip cold rolling DOI

Cheng-yan Ding,

Jun-Cheng Ye,

Jia-Wei Lei

и другие.

Journal of Materials Processing Technology, Год журнала: 2024, Номер 329, С. 118452 - 118452

Опубликована: Май 24, 2024

Язык: Английский

Процитировано

6

A novel deep ensemble reinforcement learning based control method for strip flatness in cold rolling steel industry DOI
Wen Peng,

Jiawei Lei,

Cheng-yan Ding

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 134, С. 108695 - 108695

Опубликована: Май 31, 2024

Язык: Английский

Процитировано

4

Novel shape control system of hot-rolled strip based on machine learning fused mechanism model DOI

LingMing Meng,

Jingguo Ding, Xiaojian Li

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124789 - 124789

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

4

Modeling and Simulation of Shape Control Based on Digital Twin Technology in Hot Strip Rolling DOI Creative Commons
Youzhao Sun, Jingdong Li,

Yamin Sun

и другие.

Sensors, Год журнала: 2024, Номер 24(2), С. 614 - 614

Опубликована: Янв. 18, 2024

Focusing on the problem of strip shape quality control in finishing process hot rolling, a model based metal flow and stress release with application varying contact rolling parameters is introduced. Combined digital twin technology, framework proposed, which realizes deep integration between physical time–space virtual time–space. With utilization historical data, are optimized iteratively to complete model. According schedule, raw material information taken as input obtain simulation shape, shows variety export conditions. The prediction absolute error crown flatness less than 5 μm I-unit, respectively. results prove that proposed strong performance can be effectively applied production. In addition, provides operators reference for parameter settings actual production promotes intelligent strategy.

Язык: Английский

Процитировано

3

Application of digital twin for industrial process control: A case study of gauge-looper-tension optimized control in strip hot rolling DOI Creative Commons
Jie Sun, Chen Shang,

Cheng-yan Ding

и другие.

Digital Twin, Год журнала: 2025, Номер 4, С. 10 - 10

Опубликована: Фев. 7, 2025

During the hot rolling process, performance of most control systems gradually degrades due to equipment aging and changing process conditions. However, existing gauge-looper-tension method remain restricted by a lack intelligent parameter maintenance strategies. To address this challenge enhance smart manufacturing capabilities strip rolling, based on digital twin method, paper proposes data-driven optimized for system rolling. First, model is constructed serve as an evaluation optimization platform. Subsequently, relevant data are collected calculate Hurst index identifying controller during process. Additionally, controllers with poor values, crayfish algorithm employed adjusting parameters maximize index. Experimental results demonstrate that effectively recognized state successfully enhances system. Therefore, platform, proposed can maintain performance-degraded systems.

Язык: Английский

Процитировано

0

Predictive modeling of strip width based on incremental learning and adaptive-weight fusion during the hot rolling process DOI

Wenteng Wu,

Wen Peng, Yü Liu

и другие.

Journal of Manufacturing Processes, Год журнала: 2025, Номер 142, С. 157 - 176

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Two-stream neural network for the prediction of multiple defects in continuous casting DOI
Xin-Yu Ning, Haijun Li, Qibo Wang

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 113116 - 113116

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0