Research on Statistical Characteristics and Prediction Methods of Ferronickel Slag Pervious Concrete Performance with Different Sizes of Aggregate and Mixtures DOI Creative Commons
Zhongping Tang,

Hua Peng,

Shixiang Yi

и другие.

Buildings, Год журнала: 2024, Номер 14(5), С. 1255 - 1255

Опубликована: Апрель 29, 2024

In the exploration of sustainable construction materials, application ferronickel slag (FNS) in creating pervious concrete has been investigated, considering its potential to meet dual requirements mechanical strength and fluid permeability. To elucidate statistical properties models for predicting performance FNS-composited with different sizes aggregates mixtures, a series experiments, including 54 kinds mixtures three aggregate, were conducted. The focus was on measuring compressive permeability coefficient. results indicate that decreases increase aggregate size, while coefficient increases size. Through normalization, variability these quantitatively analyzed, revealing coefficients variation concrete’s overall at 0.166, 0.132, 0.150, respectively. Predictive developed using machine learning techniques, such as Linear Regression, Support Vector Machines, Regression Trees, Gaussian Process Regression. These demonstrated proficiency forecasting

Язык: Английский

A systematic literature review of AI-based prediction methods for self-compacting, geopolymer, and other eco-friendly concrete types: Advancing sustainable concrete DOI

Tariq Ali,

Mohamed Hechmi El Ouni,

Muhammad Zeeshan Qureshi

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 440, С. 137370 - 137370

Опубликована: Июль 16, 2024

Язык: Английский

Процитировано

8

Properties of concrete incorporating plastic wastes and its applications: A comprehensive review DOI
Abubakr E. S. Musa, Almotaseembillah Ahmed,

S. Ahmed

и другие.

Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 111843 - 111843

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

A review on properties and multi-objective performance predictions of concrete based on machine learning models DOI

Bowen Ni,

Md Zillur Rahman, Shuaicheng Guo

и другие.

Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112017 - 112017

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Reinventing concrete: a comprehensive review of mechanical strength with recycled plastic waste integration DOI

Yusur Uqba Khaleel,

Sava Dlawar Qubad,

Ahmed Salih Mohammed

и другие.

Journal of Building Pathology and Rehabilitation, Год журнала: 2024, Номер 9(2)

Опубликована: Июнь 24, 2024

Язык: Английский

Процитировано

6

Performance evaluation of conductive materials in conductive mortar based on machine learning DOI
Shuxian Hong,

Jie Wu,

Biqin Dong

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 92, С. 109695 - 109695

Опубликована: Май 24, 2024

Язык: Английский

Процитировано

5

Predicting current and hydrogen productions from microbial electrolysis cells using random forest model DOI
Jinyoung Yoon,

Dae-Yeol Cheong,

Gahyun Baek

и другие.

Applied Energy, Год журнала: 2024, Номер 371, С. 123641 - 123641

Опубликована: Июнь 14, 2024

Язык: Английский

Процитировано

5

Machine learning based prediction of compressive and flexural strength of recycled plastic waste aggregate concrete DOI

Yılmaz Yılmaz,

Safa Nayır

Structures, Год журнала: 2024, Номер 69, С. 107363 - 107363

Опубликована: Сен. 28, 2024

Язык: Английский

Процитировано

4

Design optimization of high-performance, cost-efficient concrete enhanced with nano-CNTs: A hybrid approach using machine learning and NSGA-II DOI
A. A. Ebrahim

Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112251 - 112251

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Analysis of bond strength of CFRP cables with concrete using random forest model DOI
Tae-Kyun Kim, Yong Ha Hwang, Jiyoung Kim

и другие.

Journal of Building Engineering, Год журнала: 2024, Номер 96, С. 110658 - 110658

Опубликована: Сен. 3, 2024

Язык: Английский

Процитировано

2

Data-driven evolutionary programming for evaluating the mechanical properties of concrete containing plastic waste. DOI Creative Commons
Usama Asif,

Muhammad Faisal Javed,

Deema Mohammed Alsekait

и другие.

Case Studies in Construction Materials, Год журнала: 2024, Номер unknown, С. e03763 - e03763

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

2