Detection of Pediatric Pneumonia Based on Chest X-Ray Image Using Extraction Method DOI
Eva Rianti, Iskandar Fitri, Sumijan Sumijan

и другие.

Опубликована: Авг. 7, 2024

Язык: Английский

Multi‐scale dual attention embedded U‐shaped network for accurate segmentation of coronary vessels in digital subtraction angiography DOI Open Access
He Deng,

Yuqing Li,

Xu Liu

и другие.

Medical Physics, Год журнала: 2025, Номер 52(5), С. 3135 - 3150

Опубликована: Фев. 3, 2025

Abstract Background Most attention‐based networks fall short in effectively integrating spatial and channel‐wise information across different scales, which results suboptimal performance for segmenting coronary vessels x‐ray digital subtraction angiography (DSA) images. This limitation becomes particularly evident when attempting to identify tiny sub‐branches. Purpose To address this limitation, a multi‐scale dual attention embedded network (named MDA‐Net) is proposed consolidate contextual channel contiguous levels scales. Methods MDA‐Net employs five cascaded double‐convolution blocks within its encoder adeptly extract features. It incorporates skip connections that facilitate the retention of low‐level feature details throughout decoding phase, thereby enhancing reconstruction detailed image information. Furthermore, MDA modules, take features from neighboring scales hierarchical levels, are tasked with discerning subtle distinctions between foreground elements, such as diverse morphologies dimensions, complex background, includes structures like catheters or other tissues analogous intensities. sharpen segmentation accuracy, utilizes composite loss function integrates intersection over union (IoU) binary cross‐entropy loss, ensuring precision outcomes maintaining an equilibrium positive negative classifications. Results Experimental demonstrate not only performs more robustly on DSA images under various conditions, but also achieves significant advantages state‐of‐the‐art methods, achieving optimal scores terms IoU, Dice, Hausdorff distance 95%. Conclusions has high robustness segmentation, providing active strategy early diagnosis cardiovascular diseases. The code publicly available at https://github.com/30410B/MDA‐Net.git .

Язык: Английский

Процитировано

0

TSNet: Vessel segmentation with sequential frame temporal information in coronary angiography DOI
Hui Yu,

Hui Gao,

Guang Li

и другие.

Computerized Medical Imaging and Graphics, Год журнала: 2025, Номер unknown, С. 102540 - 102540

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Transformers and their application to medical image processing: A review DOI Creative Commons
Dongmei Zhu,

Dongbo Wang

Journal of Radiation Research and Applied Sciences, Год журнала: 2023, Номер 16(4), С. 100680 - 100680

Опубликована: Окт. 3, 2023

Transformers perform well in natural language processing tasks and have made many breakthroughs computer vision. In medical image processing, transformers are successfully used segmentation, classification, reconstruction, diagnosis. this paper, we mainly expound on the transformer principle its application imaging. Specifically, first introduce basic principles model structure of transformers. Then, summarize improvement mechanism transformer's network including combining with Unet network, creating a lightweight variant strengthening cross-fast link mechanism, building large as skeleton. Second, extensive discussion is given to other applications. Finally, main challenges face field future development prospects. Furthermore, systematically latest research progress their which has significant reference value for field.

Язык: Английский

Процитировано

7

A lung biopsy path planning algorithm based on the double spherical constraint Pareto and indicators’ importance-correlation degree DOI
Hui Yang, Yu Zhang,

Yuhang Gong

и другие.

Computerized Medical Imaging and Graphics, Год журнала: 2024, Номер 117, С. 102426 - 102426

Опубликована: Авг. 31, 2024

Язык: Английский

Процитировано

1

Online Tree-Structure-Constrained RPCA for Background Subtraction of X-ray Coronary Angiography Images DOI
Saeid Shakeri, Farshad Almasganj

Computer Methods and Programs in Biomedicine, Год журнала: 2024, Номер 258, С. 108463 - 108463

Опубликована: Окт. 22, 2024

Язык: Английский

Процитировано

1

An Integrated Global and Local Thresholding Method for Segmenting Blood Vessels in Angiography DOI Creative Commons
Min Zhang, Jun Wang, Xinhua Cao

и другие.

Heliyon, Год журнала: 2024, Номер 10(22), С. e38579 - e38579

Опубликована: Сен. 27, 2024

Язык: Английский

Процитировано

0

Detection of Pediatric Pneumonia Based on Chest X-Ray Image Using Extraction Method DOI
Eva Rianti, Iskandar Fitri, Sumijan Sumijan

и другие.

Опубликована: Авг. 7, 2024

Язык: Английский

Процитировано

0