Journal of Water Process Engineering, Год журнала: 2025, Номер 71, С. 107263 - 107263
Опубликована: Фев. 15, 2025
Язык: Английский
Journal of Water Process Engineering, Год журнала: 2025, Номер 71, С. 107263 - 107263
Опубликована: Фев. 15, 2025
Язык: Английский
Case Studies in Construction Materials, Год журнала: 2024, Номер 21, С. e03869 - e03869
Опубликована: Окт. 16, 2024
Язык: Английский
Процитировано
7Journal of Cleaner Production, Год журнала: 2024, Номер 473, С. 143533 - 143533
Опубликована: Авг. 31, 2024
Язык: Английский
Процитировано
6Sustainable Chemistry and Pharmacy, Год журнала: 2024, Номер 42, С. 101763 - 101763
Опубликована: Сен. 3, 2024
Язык: Английский
Процитировано
5Journal of Water Process Engineering, Год журнала: 2024, Номер 66, С. 105937 - 105937
Опубликована: Авг. 19, 2024
Язык: Английский
Процитировано
4Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04209 - e04209
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0High Performance Polymers, Год журнала: 2025, Номер unknown
Опубликована: Янв. 8, 2025
Polyimide (PI) is widely used in modern industry due to its excellent properties. Its synthesis methods and property research have significantly progressed. However, the design regulation of PI structures through traditional technologies are slow expensive, which make it difficult meet practical demand materials. With rapid development high-throughput computing data-driven technology, machine learning (ML) has become an important method for exploring new Data-driven ML envisaged as a decisive enabler PIs discovery. This paper first introduces basic workflow common algorithms ML. Secondly, applications material properties prediction, assisting computational simulation inverse desired reviewed. Finally, we discuss main challenges possible solutions research.
Язык: Английский
Процитировано
0Journal of Water Process Engineering, Год журнала: 2025, Номер 70, С. 106659 - 106659
Опубликована: Янв. 9, 2025
Язык: Английский
Процитировано
0Acta Materia Medica, Год журнала: 2025, Номер 4(1)
Опубликована: Янв. 1, 2025
The binding affinity of aptamers to targets has a crucial role in the pharmaceutical and biosensing effects. Despite diverse post-systematic evolution ligands by exponential enrichment (post-SELEX) modifications explored aptamer optimization, accurate prediction high-affinity modification strategies remains challenging. Sclerostin, which antagonizes Wnt signaling pathway, negatively regulates bone formation. Our screened sclerostin was previously shown exert anabolic potential. In current study, an interactive methodology involving exchange mutual information between experimental endeavors machine learning initially proposed design post-SELEX strategy for aptamers. After four rounds training (a total 422 modified aptamer-target datasets with types sites), antifcial intelligence model high predictive accuracy correlation coefficient 0.82 predicted actual affinities obtained. Notably, learning-powered selected from this work exhibited 105-fold higher (picomole level K D value) 3.2-folds greater Wnt-signal re-activation effect compared naturally unmodified This approach harnessed power predict most promising
Язык: Английский
Процитировано
0Information Fusion, Год журнала: 2025, Номер unknown, С. 102976 - 102976
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Environment Development and Sustainability, Год журнала: 2025, Номер unknown
Опубликована: Фев. 3, 2025
Язык: Английский
Процитировано
0