Enhanced accuracy and interpretability of nitrous oxide emission prediction of wastewater treatment plants through machine learning of univariate time series: A novel approach of learning feature reconstruction DOI
Zixuan Wang, Anlei Wei, K.S. Tang

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 71, С. 107263 - 107263

Опубликована: Фев. 15, 2025

Язык: Английский

Innovative hybrid machine learning models for estimating the compressive strength of copper mine tailings concrete DOI Creative Commons
Mana Alyami, Kennedy C. Onyelowe, Ali H. AlAteah

и другие.

Case Studies in Construction Materials, Год журнала: 2024, Номер 21, С. e03869 - e03869

Опубликована: Окт. 16, 2024

Язык: Английский

Процитировано

7

Watershed landscape characteristics and connectivity drive river water quality under seasonal dynamics DOI

Yaotao Xu,

Peng Li,

Fangming Ma

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 473, С. 143533 - 143533

Опубликована: Авг. 31, 2024

Язык: Английский

Процитировано

6

Machine learning models for estimating the compressive strength of rubberized concrete subjected to elevated temperature: Optimization and hyper-tuning DOI
Turki S. Alahmari, Irfan Ullah, Furqan Farooq

и другие.

Sustainable Chemistry and Pharmacy, Год журнала: 2024, Номер 42, С. 101763 - 101763

Опубликована: Сен. 3, 2024

Язык: Английский

Процитировано

5

Optimized prediction modeling of micropollutant removal efficiency in forward osmosis membrane systems using explainable machine learning algorithms DOI
Ali Aldrees, Muhammad Faisal Javed, Majid Khan

и другие.

Journal of Water Process Engineering, Год журнала: 2024, Номер 66, С. 105937 - 105937

Опубликована: Авг. 19, 2024

Язык: Английский

Процитировано

4

Predictive modeling for durability characteristics of blended cement concrete utilizing machine learning algorithms DOI Creative Commons
Bo Fu,

Hua Lei,

Irfan Ullah

и другие.

Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04209 - e04209

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Application of machine learning in polyimide structure design and property regulation DOI Creative Commons

Wenjia Huo,

Haiyue Wang, Liying Guo

и другие.

High Performance Polymers, Год журнала: 2025, Номер unknown

Опубликована: Янв. 8, 2025

Polyimide (PI) is widely used in modern industry due to its excellent properties. Its synthesis methods and property research have significantly progressed. However, the design regulation of PI structures through traditional technologies are slow expensive, which make it difficult meet practical demand materials. With rapid development high-throughput computing data-driven technology, machine learning (ML) has become an important method for exploring new Data-driven ML envisaged as a decisive enabler PIs discovery. This paper first introduces basic workflow common algorithms ML. Secondly, applications material properties prediction, assisting computational simulation inverse desired reviewed. Finally, we discuss main challenges possible solutions research.

Язык: Английский

Процитировано

0

Enhanced adsorbent selection for water treatment applying a composite index method: Illustration using diclofenac as a model contaminant DOI

Swati Mishra,

Manoj Kumar Tiwari

Journal of Water Process Engineering, Год журнала: 2025, Номер 70, С. 106659 - 106659

Опубликована: Янв. 9, 2025

Язык: Английский

Процитировано

0

Machine learning-powered, high-affinity modification strategies for aptamers DOI Creative Commons

Amu Gubu,

Xin Yang, Hang Luo

и другие.

Acta Materia Medica, Год журнала: 2025, Номер 4(1)

Опубликована: Янв. 1, 2025

The binding affinity of aptamers to targets has a crucial role in the pharmaceutical and biosensing effects. Despite diverse post-systematic evolution ligands by exponential enrichment (post-SELEX) modifications explored aptamer optimization, accurate prediction high-affinity modification strategies remains challenging. Sclerostin, which antagonizes Wnt signaling pathway, negatively regulates bone formation. Our screened sclerostin was previously shown exert anabolic potential. In current study, an interactive methodology involving exchange mutual information between experimental endeavors machine learning initially proposed design post-SELEX strategy for aptamers. After four rounds training (a total 422 modified aptamer-target datasets with types sites), antifcial intelligence model high predictive accuracy correlation coefficient 0.82 predicted actual affinities obtained. Notably, learning-powered selected from this work exhibited 105-fold higher (picomole level K D value) 3.2-folds greater Wnt-signal re-activation effect compared naturally unmodified This approach harnessed power predict most promising

Язык: Английский

Процитировано

0

Explainable artificial intelligence and advanced feature selection methods for predicting gas concentration in longwall mining DOI
Haoqian Chang, Xiangqian Wang, Alexandra I. Cristea

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 102976 - 102976

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Data-driven water quality prediction using hybrid machine learning approaches for sustainable development goal 6 DOI
Jana Shafi,

Ramsha Ijaz,

Apeksha Koul

и другие.

Environment Development and Sustainability, Год журнала: 2025, Номер unknown

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

0