Lecture notes in electrical engineering, Год журнала: 2024, Номер unknown, С. 344 - 354
Опубликована: Янв. 1, 2024
Язык: Английский
Lecture notes in electrical engineering, Год журнала: 2024, Номер unknown, С. 344 - 354
Опубликована: Янв. 1, 2024
Язык: Английский
Electronics, Год журнала: 2025, Номер 14(3), С. 456 - 456
Опубликована: Янв. 23, 2025
Numerous optimization problems exist in the design and operation of power systems, critical for efficient energy use, cost minimization, system stability. With increasing demand diversifying structures, these grow increasingly complex. Metaheuristic algorithms have been highlighted their flexibility effectiveness addressing such complex problems. To further explore theoretical support metaheuristic this paper proposes a novel algorithm, Boston Consulting Group Matrix-based Equilibrium Optimizer (BCGEO), which integrates (EO) with classic economic decision-making model, Matrix. This matrix is utilized to construct model evaluating potential individuals, aiding rational allocation computational resources, thereby achieving better balance between exploration exploitation. In comparative experiments across various dimensions on CEC2017, BCGEO demonstrated superior search performance over its peers. Furthermore, dynamic dispatch, has shown strong capabilities Additionally, experimental results spacecraft trajectory problem suggest broader application fields.
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер 630, С. 129690 - 129690
Опубликована: Фев. 20, 2025
Язык: Английский
Процитировано
0Multimedia Tools and Applications, Год журнала: 2025, Номер unknown
Опубликована: Март 24, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Multimedia Tools and Applications, Год журнала: 2023, Номер 82(26), С. 40701 - 40743
Опубликована: Март 31, 2023
Язык: Английский
Процитировано
10Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133236 - 133236
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Multimedia Tools and Applications, Год журнала: 2024, Номер 83(32), С. 77945 - 77966
Опубликована: Фев. 24, 2024
Язык: Английский
Процитировано
3JUCS - Journal of Universal Computer Science, Год журнала: 2023, Номер 29(7), С. 759 - 804
Опубликована: Июль 24, 2023
The Coronavirus Disease 2019 (COVID-19) is widespread throughout the world and poses a serious threat to public health safety. A COVID-19 infection can be recognized using computed tomography (CT) scans. To enhance categorization, some image segmentation techniques are presented extract regions of interest from CT images. Multi-level thresholding (MLT) one simplest most effective approaches, especially for grayscale images like scan Traditional methods use histogram approaches; however, these approaches encounter limitations. Now, swarm intelligence inspired meta-heuristic algorithms have been applied resolve MLT, deemed an NP-hard optimization task. Despite advantages meta-heuristics solve global tasks, each approach has its own drawbacks. However, common flaw that they unable maintain diversity their population during search, which means might not always converge optimum. This study proposes cooperative intelligence-based MLT hybridizes parallel developing efficient method An model-based called CPGH developed based on three practical algorithms: particle (PSO), grey wolf optimizer (GWO), Harris hawks (HHO). In model, executed concurrently, number potential solutions moved across populations through procedure migration after set generations. model problem segmentation. proposed evaluated objective functions, cross-entropy, Otsu’s, Tsallis, over selected open-sourced datasets. Various evaluation metrics covering peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), universal quality (UQI) were employed quantify quality. overall ranking results indicate performance better than conventional PSO, GWO, HHO other state-of-the-art On tested images, offered average PSNR 24.8062, SSIM 0.8818, UQI 0.9097 20 thresholds.
Язык: Английский
Процитировано
7Artificial Intelligence Review, Год журнала: 2022, Номер 56(3), С. 2563 - 2605
Опубликована: Июль 25, 2022
Язык: Английский
Процитировано
12IEEE Transactions on Fuzzy Systems, Год журнала: 2024, Номер 32(6), С. 3444 - 3457
Опубликована: Март 8, 2024
Anatomically diffused tissues (ADTs) refer to soft containing many anatomical regions that are spatially dispersed and structurally irregular. In magnetic resonance images, ADTs exhibit blurred morphology heterogeneous texture, making the accurate extraction of their 3D anatomy challenging. Center-free fuzzy C-means (FCM) can effectively partition nonlinear or nonspherical clusters, providing a promising scheme for ADT segmentation. It solves uncertainty arising from unreliable center estimation by introducing similarity criterion. However, criterion is sensitive number target objects adjacent members in images. Moreover, memberships existing algorithms susceptible losing real details. To handle these issues, we propose an edge-preserving constrained center-free FCM algorithm segmenting overcome sensitivity criterion, novel object-to-cluster measure first proposed utilize refined member-toobject adjacency. Specifically, focuses on feature space, which share approximately homogeneous characteristics with each object. Gradient-domain filtering then combined improved construct objective function FCM. With assistance designed imagedriven regularization, gradient information clusters constrained, eventually approaching guidance image. Experiments conducted two public brain datasets one local intrahepatic vein dataset. The results demonstrate more effective segmentation than state-of-the-art peers, exhibiting superior generalization capability.
Язык: Английский
Процитировано
2