Liver Cancer Algorithm: A novel bio-inspired optimizer
Computers in Biology and Medicine,
Год журнала:
2023,
Номер
165, С. 107389 - 107389
Опубликована: Авг. 30, 2023
Язык: Английский
An enhanced Coati Optimization Algorithm for global optimization and feature selection in EEG emotion recognition
Computers in Biology and Medicine,
Год журнала:
2024,
Номер
173, С. 108329 - 108329
Опубликована: Март 19, 2024
Язык: Английский
An enhanced chameleon swarm algorithm for global optimization and multi-level thresholding medical image segmentation
Neural Computing and Applications,
Год журнала:
2024,
Номер
36(15), С. 8775 - 8823
Опубликована: Март 5, 2024
Язык: Английский
Multi-threshold Image Segmentation based on an improved Salp Swarm Algorithm: Case study of breast cancer pathology images
Computers in Biology and Medicine,
Год журнала:
2023,
Номер
168, С. 107769 - 107769
Опубликована: Ноя. 28, 2023
Язык: Английский
Optimizing cancer diagnosis: A hybrid approach of genetic operators and Sinh Cosh Optimizer for tumor identification and feature gene selection
Computers in Biology and Medicine,
Год журнала:
2024,
Номер
180, С. 108984 - 108984
Опубликована: Авг. 10, 2024
Язык: Английский
An improved honey badger algorithm for global optimization and multilevel thresholding segmentation: real case with brain tumor images
Cluster Computing,
Год журнала:
2024,
Номер
27(10), С. 14315 - 14364
Опубликована: Июль 19, 2024
Язык: Английский
Advancing image segmentation with DBO-Otsu: Addressing rubber tree diseases through enhanced threshold techniques
PLoS ONE,
Год журнала:
2024,
Номер
19(3), С. e0297284 - e0297284
Опубликована: Март 21, 2024
Addressing
the
profound
impact
of
Tapping
Panel
Dryness
(TPD)
on
yield
and
quality
in
global
rubber
industry,
this
study
introduces
a
cutting-edge
Otsu
threshold
segmentation
technique,
enhanced
by
Dung
Beetle
Optimization
(DBO-Otsu).
This
innovative
approach
optimizes
combination
accelerating
convergence
diversifying
search
methodologies.
Following
initial
segmentation,
TPD
severity
levels
are
meticulously
assessed
using
morphological
characteristics,
enabling
precise
determination
optimal
thresholds
for
final
segmentation.
The
efficacy
DBO-Otsu
is
rigorously
evaluated
against
mainstream
benchmarks
like
Peak
Signal-to-Noise
Ratio
(PSNR),
Structural
Similarity
Index
(SSIM),
Feature
(FSIM),
compared
with
six
contemporary
swarm
intelligence
algorithms.
findings
reveal
that
substantially
surpasses
its
counterparts
image
processing
speed.
Further
empirical
analysis
dataset
comprising
cases
from
level
1
to
5
underscores
algorithm’s
practical
utility,
achieving
an
impressive
80%
accuracy
identification
underscoring
potential
recognition
tasks.
Язык: Английский