Failure Analysis and Intelligent Identification of Critical Friction Pairs of an Axial Piston Pump DOI Creative Commons
Yong Zhu, Tao Zhou, Shengnan Tang

и другие.

Journal of Marine Science and Engineering, Год журнала: 2023, Номер 11(3), С. 616 - 616

Опубликована: Март 14, 2023

Hydraulic axial piston pumps are the power source of fluid systems and have important applications in many fields. They a compact structure, high efficiency, large transmission power, excellent flow variable performance. However, crucial components easily suffer from different faults. It is therefore to investigate precise fault identification method maintain reliability system. The use deep models feature learning, data mining, automatic identification, classification has led development novel diagnosis methods. In this research, typical faults wears friction pairs were analyzed. Different working conditions considered by monitoring outlet pressure signals. To overcome low efficiency time-consuming nature traditional manual parameter tuning, Bayesian algorithm was introduced for adaptive optimization an established learning model. proposed can explore potential information signals adaptively identify main types. average diagnostic accuracy found reach up 100%, indicating ability detect with precision.

Язык: Английский

Model-Assisted Multi-source Fusion Hypergraph Convolutional Neural Networks for intelligent few-shot fault diagnosis to Electro-Hydrostatic Actuator DOI
Xiaoli Zhao, Xingjun Zhu, Jiahui Liu

и другие.

Information Fusion, Год журнала: 2023, Номер 104, С. 102186 - 102186

Опубликована: Дек. 11, 2023

Язык: Английский

Процитировано

46

Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings DOI
Jinxin Wu, Deqiang He, Jiayi Li

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 247, С. 110143 - 110143

Опубликована: Апрель 21, 2024

Язык: Английский

Процитировано

40

Deep learning based approaches for intelligent industrial machinery health management and fault diagnosis in resource-constrained environments DOI Creative Commons

Ali Saeed,

Muazzam A. Khan, Usman Akram

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 7, 2025

Industry 4.0 represents the fourth industrial revolution, which is characterized by incorporation of digital technologies, Internet Things (IoT), artificial intelligence, big data, and other advanced technologies into processes. Industrial Machinery Health Management (IMHM) a crucial element, based on (IIoT), focuses monitoring health condition machinery. The academic community has focused various aspects IMHM, such as prognostic maintenance, monitoring, estimation remaining useful life (RUL), intelligent fault diagnosis (IFD), architectures edge computing. Each these categories holds its own significance in context In this survey, we specifically examine research RUL prediction, edge-based architectures, diagnosis, with primary focus domain diagnosis. importance IFD methods ensuring smooth execution processes become increasingly evident. However, most are formulated under assumption complete, balanced, abundant often does not align real-world engineering scenarios. difficulties linked to classifications IMHM have received noteworthy attention from community, leading substantial number published papers topic. While there existing comprehensive reviews that address major challenges limitations field, still gap thoroughly investigating perspectives across complete To fill gap, undertake survey discusses achievements domain, focusing IFD. Initially, classify three distinct perspectives: method processing aims optimize inputs for model mitigate training sample set; constructing model, involves designing structure features enhance resilience challenges; optimizing training, refining process models emphasizes ideal data process. Subsequently, covers techniques related prediction edge-cloud resource-constrained environments. Finally, consolidates outlook relevant issues explores potential solutions, offers practical recommendations further consideration.

Язык: Английский

Процитировано

2

Attention-aware temporal–spatial graph neural network with multi-sensor information fusion for fault diagnosis DOI
Zhe Wang, Zhiying Wu, Xingqiu Li

и другие.

Knowledge-Based Systems, Год журнала: 2023, Номер 278, С. 110891 - 110891

Опубликована: Авг. 7, 2023

Язык: Английский

Процитировано

40

A hybrid deep learning model towards fault diagnosis of drilling pump DOI Creative Commons
Junyu Guo, Yulai Yang, He Li

и другие.

Applied Energy, Год журнала: 2024, Номер 372, С. 123773 - 123773

Опубликована: Июнь 26, 2024

This paper proposes a novel method namely WaveletKernelNet-Convolutional Block Attention Module-BiLSTM for intelligent fault diagnosis of drilling pumps. Initially, the random forest is applied to determine target signals that can reflect characteristics Accordingly, Module Net constructed noise reduction and feature extraction based on signals. The Convolutional embedded in WaveletKernelNet-CBAM adjusts weight enhances representation channel spatial dimension. Finally, Bidirectional Long-Short Term Memory concept introduced enhance ability model process time series data. Upon constructing network, Bayesian optimization algorithm utilized ascertain fine-tune ideal hyperparameters, thereby ensuring network reaches its optimal performance level. With hybrid deep learning presented, an accurate real five-cylinder pump carried out results confirmed applicability reliability. Two sets comparative experiments validated superiority proposed method. Additionally, generalizability verified through domain adaptation experiments. contributes safe production oil gas sector by providing robust industrial equipment.

Язык: Английский

Процитировано

17

Early bearing fault diagnosis for imbalanced data in offshore wind turbine using improved deep learning based on scaled minimum unscented kalman filter DOI
Haihong Tang, Kun Zhang, Bing Wang

и другие.

Ocean Engineering, Год журнала: 2024, Номер 300, С. 117392 - 117392

Опубликована: Март 12, 2024

Язык: Английский

Процитировано

14

Systematic Review on Fault Diagnosis on Rolling-Element Bearing DOI

M. Pandiyan,

T. Narendiranath Babu

Journal of Vibration Engineering & Technologies, Год журнала: 2024, Номер unknown

Опубликована: Апрель 10, 2024

Язык: Английский

Процитировано

14

Mitigating overconfidence in unknown sample predictions: A confidence-enhanced one-versus-all network for open-set transfer fault diagnosis DOI
Yang Liu, Yaowei Shi, Minqiang Deng

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113013 - 113013

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Cross-sensor contrastive learning-based pre-training for machinery fault diagnosis under sample-limited conditions DOI
Hao Hu, Yue Ma, Ruoxue Li

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113075 - 113075

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Multi-view rotating machinery fault diagnosis with adaptive co-attention fusion network DOI
Xiaorong Liu, Jie Wang, Sa Meng

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 122, С. 106138 - 106138

Опубликована: Март 20, 2023

Язык: Английский

Процитировано

19