Control Engineering Practice, Год журнала: 2025, Номер 162, С. 106391 - 106391
Опубликована: Май 13, 2025
Язык: Английский
Control Engineering Practice, Год журнала: 2025, Номер 162, С. 106391 - 106391
Опубликована: Май 13, 2025
Язык: Английский
Information Fusion, Год журнала: 2023, Номер 104, С. 102186 - 102186
Опубликована: Дек. 11, 2023
Язык: Английский
Процитировано
48Reliability Engineering & System Safety, Год журнала: 2024, Номер 247, С. 110143 - 110143
Опубликована: Апрель 21, 2024
Язык: Английский
Процитировано
40Knowledge-Based Systems, Год журнала: 2023, Номер 278, С. 110891 - 110891
Опубликована: Авг. 7, 2023
Язык: Английский
Процитировано
40Applied Energy, Год журнала: 2024, Номер 372, С. 123773 - 123773
Опубликована: Июнь 26, 2024
This paper proposes a novel method namely WaveletKernelNet-Convolutional Block Attention Module-BiLSTM for intelligent fault diagnosis of drilling pumps. Initially, the random forest is applied to determine target signals that can reflect characteristics Accordingly, Module Net constructed noise reduction and feature extraction based on signals. The Convolutional embedded in WaveletKernelNet-CBAM adjusts weight enhances representation channel spatial dimension. Finally, Bidirectional Long-Short Term Memory concept introduced enhance ability model process time series data. Upon constructing network, Bayesian optimization algorithm utilized ascertain fine-tune ideal hyperparameters, thereby ensuring network reaches its optimal performance level. With hybrid deep learning presented, an accurate real five-cylinder pump carried out results confirmed applicability reliability. Two sets comparative experiments validated superiority proposed method. Additionally, generalizability verified through domain adaptation experiments. contributes safe production oil gas sector by providing robust industrial equipment.
Язык: Английский
Процитировано
17Journal of Vibration Engineering & Technologies, Год журнала: 2024, Номер unknown
Опубликована: Апрель 10, 2024
Язык: Английский
Процитировано
15Ocean Engineering, Год журнала: 2024, Номер 300, С. 117392 - 117392
Опубликована: Март 12, 2024
Язык: Английский
Процитировано
14Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Янв. 7, 2025
Industry 4.0 represents the fourth industrial revolution, which is characterized by incorporation of digital technologies, Internet Things (IoT), artificial intelligence, big data, and other advanced technologies into processes. Industrial Machinery Health Management (IMHM) a crucial element, based on (IIoT), focuses monitoring health condition machinery. The academic community has focused various aspects IMHM, such as prognostic maintenance, monitoring, estimation remaining useful life (RUL), intelligent fault diagnosis (IFD), architectures edge computing. Each these categories holds its own significance in context In this survey, we specifically examine research RUL prediction, edge-based architectures, diagnosis, with primary focus domain diagnosis. importance IFD methods ensuring smooth execution processes become increasingly evident. However, most are formulated under assumption complete, balanced, abundant often does not align real-world engineering scenarios. difficulties linked to classifications IMHM have received noteworthy attention from community, leading substantial number published papers topic. While there existing comprehensive reviews that address major challenges limitations field, still gap thoroughly investigating perspectives across complete To fill gap, undertake survey discusses achievements domain, focusing IFD. Initially, classify three distinct perspectives: method processing aims optimize inputs for model mitigate training sample set; constructing model, involves designing structure features enhance resilience challenges; optimizing training, refining process models emphasizes ideal data process. Subsequently, covers techniques related prediction edge-cloud resource-constrained environments. Finally, consolidates outlook relevant issues explores potential solutions, offers practical recommendations further consideration.
Язык: Английский
Процитировано
2Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 122, С. 106138 - 106138
Опубликована: Март 20, 2023
Язык: Английский
Процитировано
19Knowledge-Based Systems, Год журнала: 2024, Номер 286, С. 111397 - 111397
Опубликована: Янв. 10, 2024
Язык: Английский
Процитировано
7Knowledge-Based Systems, Год журнала: 2024, Номер 296, С. 111903 - 111903
Опубликована: Май 14, 2024
Язык: Английский
Процитировано
7