Extended Representation Learning Based Neural Network Model for Outlier Detection DOI

Sidratul Muntaha,

Sohana Jahan,

Md. Anwarul Islam Bhuiyan

и другие.

Journal of Artificial Intelligence Machine Learning and Neural Network, Год журнала: 2024, Номер 46, С. 12 - 26

Опубликована: Окт. 1, 2024

Outlier detection problems have drawn much attention in recent times for their variety of applications. An outlier is a data point that different from the rest and can be detected based on some measure. In years, Artificial Neural Networks (ANN) been used extensively finding outliers more efficiently. This method highly competitive with other methods currently use such as similarity searches, density-based approaches, clustering, distance-based linear methods, etc. this paper, we proposed an extended representation learning neural network. model follows symmetric structure like autoencoder where dimensions are initially increased original then reduced. Root mean square error to compute score. Reconstructed calculated analyzed detect possible outliers. The experimental findings documented by applying it two distinct datasets. performance compared several state-of-art approaches Rand Net, Hawkins, LOF, HiCS, Spectral. Numerical results show outperforms all these terms 5 validation scores, Accuracy (AC), Precision (P), Recall, F1 Score, AUC

Язык: Английский

Concept-cognitive learning survey: Mining and fusing knowledge from data DOI
Doudou Guo, Weihua Xu, Weiping Ding

и другие.

Information Fusion, Год журнала: 2024, Номер 109, С. 102426 - 102426

Опубликована: Апрель 16, 2024

Язык: Английский

Процитировано

29

Rockburst Intensity Grade Prediction Based on Data Preprocessing Techniques and Multi-model Ensemble Learning Algorithms DOI
Zhichao Jia,

Yi Wang,

Junhui Wang

и другие.

Rock Mechanics and Rock Engineering, Год журнала: 2024, Номер 57(7), С. 5207 - 5227

Опубликована: Март 18, 2024

Язык: Английский

Процитировано

5

Bit-Close: a fast incremental concept calculation method DOI

Yunfeng Ke,

Jinhai Li, Shen Li

и другие.

Applied Intelligence, Год журнала: 2024, Номер 54(3), С. 2582 - 2593

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

4

Attribute granules-based object entropy for outlier detection in nominal data DOI
Chang Liu, Dezhong Peng,

Hongmei Chen

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108198 - 108198

Опубликована: Март 11, 2024

Язык: Английский

Процитировано

3

Individual entity induced label concept set for classification: An information fusion viewpoint DOI
Zhonghui Liu,

Xiaofei Zeng,

Jinhai Li

и другие.

Information Fusion, Год журнала: 2024, Номер 111, С. 102495 - 102495

Опубликована: Май 25, 2024

Язык: Английский

Процитировано

3

Optimal meso-granularity selection for classification based on Bayesian optimization DOI

Qiangqiang Chen,

Mengyu Yan, Mengyu Yan

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113552 - 113552

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Outlier detection using flexible categorization and interrogative agendas DOI Creative Commons

Marcel Boersma,

Krishna Manoorkar, Alessandra Palmigiano

и другие.

Decision Support Systems, Год журнала: 2024, Номер 180, С. 114196 - 114196

Опубликована: Фев. 19, 2024

Categorization is one of the basic tasks in machine learning and data analysis. Building on formal concept analysis (FCA), starting point present work that different ways to categorize a given set objects exist, which depend choice sets features used classify them, such may yield better or worse categorizations, relative task at hand. In their turn, (a priori) particular over another might be subjective express certain epistemic stance (e.g. interests, relevance, preferences) an agent group agents, namely, interrogative agenda. paper, we represent agendas as features, explore compare w.r.t. (agendas). We first develop simple unsupervised FCA-based algorithm for outlier detection uses categorizations arising from agendas. then supervised meta-learning learn suitable (fuzzy) categorization with weights masses. combine this obtain algorithm. show these algorithms perform par commonly datasets detection. These provide both local global explanations results.

Язык: Английский

Процитировано

2

Data depth functions for non-standard data by use of formal concept analysis DOI Creative Commons
Hannah Blocher, Georg Schollmeyer

Journal of Multivariate Analysis, Год журнала: 2024, Номер 205, С. 105372 - 105372

Опубликована: Сен. 19, 2024

Язык: Английский

Процитировано

2

TIEOD: Three-way concept-based information entropy for outlier detection DOI
Qian Hu, Jun Zhang,

Jusheng Mi

и другие.

Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112642 - 112642

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

2

Fuzzy object-induced network three-way concept lattice and its attribute reduction DOI

Miao Liu,

Ping Zhu

International Journal of Approximate Reasoning, Год журнала: 2024, Номер 173, С. 109251 - 109251

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

1