Expert Systems with Applications, Год журнала: 2024, Номер 266, С. 125965 - 125965
Опубликована: Дек. 10, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2024, Номер 266, С. 125965 - 125965
Опубликована: Дек. 10, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2023, Номер 236, С. 121292 - 121292
Опубликована: Сен. 1, 2023
Язык: Английский
Процитировано
71Tsinghua Science & Technology, Год журнала: 2024, Номер 29(5), С. 1249 - 1265
Опубликована: Май 2, 2024
With the emergence of artificial intelligence era, all kinds robots are traditionally used in agricultural production. However, studies concerning robot task assignment problem agriculture field, which is closely related to cost and efficiency a smart farm, limited. Therefore, Multi-Weeding Robot Task Assignment (MWRTA) addressed this paper minimize maximum completion time residual herbicide. A mathematical model set up, Multi-Objective Teaching-Learning-Based Optimization (MOTLBO) algorithm presented solve problem. In MOTLBO algorithm, heuristic-based initialization comprising an improved Nawaz Enscore, Ham (NEH) heuristic load-based generate initial population with high level quality diversity. An effective teaching-learning-based optimization process designed dynamic grouping mechanism redefined individual updating rule. multi-neighborhood-based local search strategy provided balance exploitation exploration algorithm. Finally, comprehensive experiment conducted compare proposed several state-of-the-art algorithms literature. Experimental results demonstrate significant superiority for solving under consideration.
Язык: Английский
Процитировано
23IEEE Transactions on Computational Social Systems, Год журнала: 2023, Номер 11(4), С. 5158 - 5167
Опубликована: Май 4, 2023
While online social media brings convenience to people's communication, it has also caused the widespread spread of rumors and brought great harm. Recent deep-learning approaches attempt identify by engaging in interactive user feedback. However, performance these models suffers from insufficient noisy labeled data. In this article, we propose a novel rumor detection model called graph contrastive learning with feature augmentation (FAGCL), which injects noise into space learns contrastively constructing asymmetric structures. FAGCL takes preference news embedding as initial features propagation tree then adopts attention network update node representations. To obtain graph-level representation for classification, fuses multiple pooling techniques. Moreover, an auxiliary task constrain consistency. Contrastive on data mines supervision information itself, making more robust effective. Results two real-world datasets demonstrate that our proposed achieves significant improvements over baseline models.
Язык: Английский
Процитировано
22Journal of Manufacturing Systems, Год журнала: 2024, Номер 72, С. 519 - 535
Опубликована: Янв. 9, 2024
Язык: Английский
Процитировано
8Information Processing & Management, Год журнала: 2024, Номер 61(3), С. 103666 - 103666
Опубликована: Янв. 20, 2024
Язык: Английский
Процитировано
7Knowledge-Based Systems, Год журнала: 2023, Номер 284, С. 111275 - 111275
Опубликована: Дек. 10, 2023
Язык: Английский
Процитировано
10Applied Soft Computing, Год журнала: 2024, Номер 158, С. 111583 - 111583
Опубликована: Апрель 4, 2024
Язык: Английский
Процитировано
3Social Network Analysis and Mining, Год журнала: 2025, Номер 15(1)
Опубликована: Апрель 16, 2025
Язык: Английский
Процитировано
0Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113637 - 113637
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Chinese Physics B, Год журнала: 2024, Номер 33(8), С. 088901 - 088901
Опубликована: Июнь 3, 2024
Abstract The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation various rumors. In order to block outbreak rumor, one most effective containment measures is spreading positive information counterbalance diffusion rumor. mechanism rumors suppression strategies are significant challenging research issues. Firstly, in simulate dissemination multiple types information, we propose competitive linear threshold model with state transition (CLTST) describe process rumor anti-rumor same network. Subsequently, put forward community-based blocking (CRB) algorithm based on influence maximization theory networks. Its crucial step identify set influential seeds that propagate other nodes, which includes community detection, selection candidate generation seed set. Under CLTST model, CRB has been compared six state-of-the-art algorithms nine verify performance. Experimental results show proposed can better reflect propagation, review Moreover, performance weakening ability, select more accurately achieve spread, sensitivity analysis, distribution running time.
Язык: Английский
Процитировано
2