Exploring evolutionary-tuned autoencoder-based architectures for fault diagnosis in a wind turbine gearbox DOI Creative Commons
Samuel M. Gbashi, Obafemi O. Olatunji, Paul A. Adedeji

и другие.

Smart Science, Год журнала: 2024, Номер unknown, С. 1 - 21

Опубликована: Июнь 11, 2024

Vibration-based fault diagnosis from rotary machinery requires prior feature extraction, selection, or dimensionality reduction. Feature extraction is tedious, and computationally expensive. selection presents unique challenges intrinsic to the method adopted. Nonlinear reduction may be achieved through kernel transformations, however there often a trade-off in information achieve this. Given above, this study proposes novel autoencoder (AE) pre-processing framework for vibration-based wind turbine (WT) gearboxes. In study, AEs are used learn features of WT gearbox vibration data while simultaneously compressing data, obviating need costly engineering The effectiveness proposed was evaluated by training genetically optimized linear discriminant analysis (LDA), multilayer perceptron (MLP), random forest (RF) models, with AE's latent space features. models were using known classification metrics. results showed that performance depends on size space. As increased, quality extracted improved until plateau observed at dimension 10. AE pre-processed RF, MLP, LDA designated AE-Pre-GO-RF, AE-Pre-GO-MLP, AE-Pre-GO-LDA, accuracy, sensitivity, specificity seven (7) conditions. AE-Pre-GO-RF model outperformed its counterparts, scoring 100% all metrics, though longest time (239.50 sec). Comparable found comparing similar investigations involving traditional processing techniques. More so, it established effective can manifold learning without expensive engineering.

Язык: Английский

Adaptive chaotic dynamic learning-based gazelle optimization algorithm for feature selection problems DOI
Mahmoud Abdel-Salam, Heba Askr, Aboul Ella Hassanien

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124882 - 124882

Опубликована: Июль 29, 2024

Язык: Английский

Процитировано

17

An improved Genghis Khan optimizer based on enhanced solution quality strategy for global optimization and feature selection problems DOI
Mahmoud Abdel-Salam, Ahmed Ibrahim Alzahrani,

Fahad Alblehai

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 302, С. 112347 - 112347

Опубликована: Авг. 5, 2024

Язык: Английский

Процитировано

14

A novel importance-guided particle swarm optimization based on MLP for solving large-scale feature selection problems DOI
Yu Xue, Chenyi Zhang

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 91, С. 101760 - 101760

Опубликована: Ноя. 4, 2024

Язык: Английский

Процитировано

10

Enhanced genetic algorithm for indoor low-illumination stereo matching energy function optimization DOI
Hongjin Zhang, Hui Wei

Alexandria Engineering Journal, Год журнала: 2025, Номер 121, С. 1 - 17

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

1

A multiobjective optimization of task workflow scheduling using hybridization of PSO and WOA algorithms in cloud-fog computing DOI
Sumit Bansal, Himanshu Aggarwal

Cluster Computing, Год журнала: 2024, Номер 27(8), С. 10921 - 10952

Опубликована: Май 13, 2024

Язык: Английский

Процитировано

9

Hierarchical learning multi-objective firefly algorithm for high-dimensional feature selection DOI
Jia Zhao, Siyu Lv, Renbin Xiao

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 165, С. 112042 - 112042

Опубликована: Авг. 2, 2024

Язык: Английский

Процитировано

7

Binary hiking optimization for gene selection: Insights from HNSCC RNA-Seq data DOI
Elnaz Pashaei, Elham Pashaei, Seyedali Mirjalili

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер 268, С. 126404 - 126404

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

1

Ship pipe production optimization method for solving distributed heterogeneous energy-efficient flexible flowshop scheduling with mobile resource limitation DOI
Hua Xuan, Xiaofan Zhang, Yixuan Wu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126603 - 126603

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Single-stage filter-based local feature selection using an immune algorithm for high-dimensional microarray data DOI
Yi Wang, Wenshan Li, Tao Li

и другие.

Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 112895 - 112895

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

AEOWOA: hybridizing whale optimization algorithm with artificial ecosystem-based optimization for optimal feature selection and global optimization DOI
Reham R. Mostafa, Abdelazim G. Hussien,

Marwa A. Gaheen

и другие.

Evolving Systems, Год журнала: 2024, Номер 15(5), С. 1753 - 1785

Опубликована: Май 15, 2024

Язык: Английский

Процитировано

5