Fractional-Order Controller for the Course Tracking of Underactuated Surface Vessels Based on Dynamic Neural Fuzzy Model DOI Creative Commons
Guangyu Li, Yanxin Li, Xiang Li

и другие.

Fractal and Fractional, Год журнала: 2024, Номер 8(12), С. 720 - 720

Опубликована: Дек. 5, 2024

Aiming at the uncertainty problem caused by time-varying modeling parameters associated with ship speed in course tracking control of underactuated surface vessels (USVs), this paper proposes a algorithm based on dynamic neural fuzzy model (DNFM). The DNFM simultaneously adjusts structure and during learning fully approximates inverse dynamics ships. Online identification lays foundation for motion control. trained DNFM, serving as an controller, is connected parallel fractional-order PIλDμ controller to be used ship’s course. Moreover, weights can further adjusted tracking. Taking actual data 5446 TEU large container ship, simulation experiments are conducted, respectively, tracking, under wind wave interferences, comparison five different controllers. This proposed overcome influence parameters, desired quickly effectively.

Язык: Английский

A hybrid genetic-fuzzy ant colony optimization algorithm for automatic K-means clustering in urban global positioning system DOI

Xiaojuan Ran,

Naret Suyaroj, Worawit Tepsan

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109237 - 109237

Опубликована: Сен. 6, 2024

Язык: Английский

Процитировано

21

Competitive swarm optimizer with dynamic multi-competitions and convergence accelerator for large-scale optimization problems DOI
Chen Huang, Daqing Wu, Xiangbing Zhou

и другие.

Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112252 - 112252

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

12

Enhanced Wild Horse Optimizer with Cauchy Mutation and Dynamic Random Search for Hyperspectral Image Band Selection DOI Open Access
Tao Chen,

Yue Sun,

Huayue Chen

и другие.

Electronics, Год журнала: 2024, Номер 13(10), С. 1930 - 1930

Опубликована: Май 15, 2024

The high dimensionality of hyperspectral images (HSIs) brings significant redundancy to data processing. Band selection (BS) is one the most commonly used reduction (DR) techniques, which eliminates redundant information between bands while retaining a subset with content and low noise. wild horse optimizer (WHO) novel metaheuristic algorithm widely for its efficient search performance, yet it tends become trapped in local optima during later iterations. To address these issues, an enhanced (IBSWHO) proposed HSI band this paper. IBSWHO utilizes Sobol sequences initialize population, thereby increasing population diversity. It incorporates Cauchy mutation perturb certain probability, enhancing global capability avoiding optima. Additionally, dynamic random techniques are introduced improve efficiency expand space. convergence verified on nonlinear test functions compared state-of-the-art optimization algorithms. Finally, experiments three classic datasets conducted classification. experimental results demonstrate that selected by achieves best classification accuracy conventional methods, confirming superiority BS method.

Язык: Английский

Процитировано

3

An Efficient Multiple Empirical Kernel Learning Algorithm with Data Distribution Estimation DOI Open Access
Jinbo Huang,

Zhongmei Luo,

Xiaoming Wang

и другие.

Electronics, Год журнала: 2025, Номер 14(9), С. 1879 - 1879

Опубликована: Май 5, 2025

The Multiple Random Empirical Kernel Learning Machine (MREKLM) typically generates multiple empirical feature spaces by selecting a limited group of samples, which helps reduce training duration. However, MREKLM does not incorporate data distribution information during the projection process, leading to inconsistent performance and issues with reproducibility. To address this limitation, we introduce within-class scatter matrix that leverages resulting in development Fast Incorporating Data Distribution Information (FMEKL-DDI). This approach enables algorithm sample projection, improving decision boundary enhancing classification accuracy. further minimize selection time, employ border point technique utilizing locality-sensitive hashing (BPLSH), efficiently picking samples for space development. experimental results from various datasets demonstrate FMEKL-DDI significantly improves accuracy while reducing duration, thereby providing more efficient strong generalization performance.

Язык: Английский

Процитировано

0

Possibilistic c-means clustering approach based on a novel weighted-kernel distance for imbalanced images with minority targets in sparsely distribution DOI
Haiyan Yu,

Yuting Wu,

Zheng He

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 154, С. 110902 - 110902

Опубликована: Май 10, 2025

Язык: Английский

Процитировано

0

Multiview ensemble clustering of hypergraph p-Laplacian regularization with weighting and denoising DOI

Dacheng Zheng,

Zhiwen Yu,

Wuxing Chen

и другие.

Information Sciences, Год журнала: 2024, Номер 681, С. 121187 - 121187

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

1

Cross-Hopping Graph Networks for Hyperspectral–High Spatial Resolution (H2) Image Classification DOI Creative Commons
Tao Chen, Tingting Wang, Huayue Chen

и другие.

Remote Sensing, Год журнала: 2024, Номер 16(17), С. 3155 - 3155

Опубликована: Авг. 27, 2024

As we take stock of the contemporary issue, remote sensing images are gradually advancing towards hyperspectral–high spatial resolution (H2) double-high images. However, high produces serious heterogeneity and spectral variability while improving image resolution, which increases difficulty feature recognition. So as to make best features under an insufficient number marking samples, would like achieve effective recognition accurate classification in H2 In this paper, a cross-hop graph network for classification(H2-CHGN) is proposed. It two-branch deep extraction geared images, consisting attention (CGAT) multiscale convolutional neural (MCNN): CGAT branch utilizes superpixel information filter samples with relevance designate them be classified, then mechanism broaden range convolution obtain more representative global features. another branch, MCNN uses dual kernels extract fuse at various scales attaining pixel-level multi-scale local by parallel cross connecting. Finally, dual-channel utilized fusion elements prominent. This experiment on classical dataset (Pavia University) datasets (WHU-Hi-LongKou WHU-Hi-HongHu) shows that H2-CHGN can efficiently competently used classification. detail, experimental results showcase superior performance, outpacing state-of-the-art methods 0.75–2.16% overall accuracy.

Язык: Английский

Процитировано

1

Ensemble strategies exploration for the calibration data optimized spatial filters based SSVEP recognition algorithms DOI
Tian-jian Luo, Sanjeevkumar Angadi,

Mohamed A. Elashiri

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 99, С. 106932 - 106932

Опубликована: Сен. 26, 2024

Язык: Английский

Процитировано

1

Clinical research text summarization method based on fusion of domain knowledge DOI

Shiwei Jiang,

Qingxiao Zheng, Taiyong Li

и другие.

Journal of Biomedical Informatics, Год журнала: 2024, Номер 156, С. 104668 - 104668

Опубликована: Июнь 12, 2024

Язык: Английский

Процитировано

0

Consistency-oriented clustering ensemble via data reconstruction DOI
Hengshan Zhang, Yun Wang, Yanping Chen

и другие.

Applied Intelligence, Год журнала: 2024, Номер 54(20), С. 9641 - 9654

Опубликована: Июль 19, 2024

Язык: Английский

Процитировано

0