Neurocomputing, Год журнала: 2024, Номер unknown, С. 128934 - 128934
Опубликована: Ноя. 1, 2024
Язык: Английский
Neurocomputing, Год журнала: 2024, Номер unknown, С. 128934 - 128934
Опубликована: Ноя. 1, 2024
Язык: Английский
Intelligent Systems with Applications, Год журнала: 2025, Номер 25, С. 200481 - 200481
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
7Progress in Materials Science, Год журнала: 2024, Номер unknown, С. 101392 - 101392
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
11Langmuir, Год журнала: 2025, Номер unknown
Опубликована: Янв. 17, 2025
The widespread application of metal-organic frameworks (MOFs) in wastewater and gas treatment has created an increasing demand for accurate rapid assessment their BET specific surface area. However, experimental methods acquiring sufficient statistical data are often costly time-consuming. Therefore, this study proposes a dual-stage stacking model with Gaussian mixture model-virtual sample generation (GMM-VSG) technology the area prediction. In study, 90 real samples were selected from MOF database 300 virtual generated. performance on both was evaluated by using four machine learning models, including Bayesian regression (Bayes), adaptive boosting (AdaBoost), random forest (RF), extreme gradient (XGBoost). Subsequently, three best-performing models linear constructing two-stage model, R2 value 0.974. Finally, conditions adjusted based feature importance analysis during validation process, result shows that prediction accuracy is 0.943. This contributes to development more efficient evaluation methods.
Язык: Английский
Процитировано
1Journal of Materials Informatics, Год журнала: 2025, Номер 5(2)
Опубликована: Март 24, 2025
Over the past decades, machine learning has kept playing an important role in materials design and discovery. In practical applications, usually need to fulfill requirements of multiple target properties. Therefore, multi-objective optimization based on become one most promising directions. This review aims provide a detailed discussion learning-assisted discovery combined with recent research progress. First, we briefly introduce workflow learning. Then, Pareto fronts corresponding algorithms are summarized. Next, strategies demonstrated, including front-based strategy, scalarization function, constraint method. Subsequently, progress is summarized different discussed. Finally, propose future directions for learning-based materials.
Язык: Английский
Процитировано
1Progress in Organic Coatings, Год журнала: 2024, Номер 194, С. 108604 - 108604
Опубликована: Июнь 15, 2024
Язык: Английский
Процитировано
4Theoretical Chemistry Accounts, Год журнала: 2024, Номер 143(8)
Опубликована: Авг. 1, 2024
Язык: Английский
Процитировано
4Applied Physics Reviews, Год журнала: 2025, Номер 12(1)
Опубликована: Янв. 6, 2025
Artificial intelligence (AI) and machine learning (ML) have attracted the interest of research community in recent years. ML has found applications various areas, especially where relevant data that could be used for algorithm training retraining are available. In this review article, been discussed relation to its corrosion science, monitoring control. tools techniques, structure modeling methods, were thoroughly discussed. Furthermore, detailed inhibitor design/modeling coupled with associated limitations future perspectives reported.
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 146, С. 110161 - 110161
Опубликована: Фев. 17, 2025
Язык: Английский
Процитировано
0Process Safety and Environmental Protection, Год журнала: 2024, Номер unknown
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
1Neurocomputing, Год журнала: 2024, Номер unknown, С. 128934 - 128934
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1