Journal of Water Process Engineering, Год журнала: 2024, Номер 68, С. 106585 - 106585
Опубликована: Ноя. 21, 2024
Язык: Английский
Journal of Water Process Engineering, Год журнала: 2024, Номер 68, С. 106585 - 106585
Опубликована: Ноя. 21, 2024
Язык: Английский
Results in Engineering, Год журнала: 2024, Номер 23, С. 102637 - 102637
Опубликована: Июль 29, 2024
Airborne contaminants pose significant environmental and health challenges. Titanium dioxide (TiO2) has emerged as a leading photocatalyst in the degradation of air compared to other photocatalysts due its inherent inertness, cost-effectiveness, photostability. To assess effectiveness, laboratory examinations are frequently employed measure photocatalytic rate TiO2. However, this approach involves time-consuming requirements, labor-intensive tasks, high costs. In literature, ensemble or standalone models commonly used for assessing performance TiO2 water contaminants. Nonetheless, application metaheuristic hybrid potential be more effective predictive accuracy efficiency. Accordingly, research utilized machine learning (ML) algorithms estimate photo-degradation constants organic pollutants using nanoparticles exposure ultraviolet light. Six metaheuristics optimization algorithms, namely, nuclear reaction (NRO), differential evolution algorithm (DEA), human felicity (HFA), lightning search (LSA), Harris hawks (HHA), tunicate swarm (TSA) were combined with random forest (RF) technique establish models. A database 200 data points was acquired from experimental studies model training testing. Furthermore, multiple statistical indicators 10-fold cross-validation examine established model's robustness. The TSA-RF demonstrated superior prediction among six suggested models, achieving an impressive correlation (R) 0.90 lower root mean square error (RMSE) 0.25. contrast, HFA-RF, HHA-RF, NRO-RF exhibited slightly R-value 0.88, RMSE scores 0.32. DEA-RF LSA-RF while effective, showed marginally 0.85, values 0.45 0.44, respectively. Moreover, SHapley Additive exPlanation (SHAP) results indicated that rates through photocatalysis most notably influenced by factors such reactor sizes, dosage, humidity, intensity.
Язык: Английский
Процитировано
20Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Июнь 25, 2024
Abstract The use of waste foundry sand (WFS) in concrete production has gained attention as an eco-friendly approach to reduction and enhancing cementitious materials. However, testing the impact WFS through experiments is costly time-consuming. Therefore, this study employs machine learning (ML) models, including support vector regression (SVR), decision tree (DT), AdaBoost regressor (AR) ensemble model predict properties accurately. Moreover, SVR was employed conjunction with three robust optimization algorithms: firefly algorithm (FFA), particle swarm (PSO), grey wolf (GWO), construct hybrid models. Using 397 experimental data points for compressive strength (CS), 146 elastic modulus (E), 242 split tensile (STS), models were evaluated statistical metrics interpreted using SHapley Additive exPlanation (SHAP) technique. SVR-GWO demonstrated exceptional accuracy predicting (WFSC) characteristics. exhibited correlation coefficient values (R) 0.999 CS E, 0.998 STS. Age found be a significant factor influencing WFSC properties. also comparable prediction model. In addition, SHAP analysis revealed optimal content input variables mix. Overall, showed compared individual application these sophisticated soft computing techniques holds potential stimulate widespread adoption sustainable production, thereby fostering bolstering environmentally conscious construction practices.
Язык: Английский
Процитировано
14Construction and Building Materials, Год журнала: 2024, Номер 442, С. 137509 - 137509
Опубликована: Июль 31, 2024
Язык: Английский
Процитировано
7Journal of Water Process Engineering, Год журнала: 2024, Номер 66, С. 105937 - 105937
Опубликована: Авг. 19, 2024
Язык: Английский
Процитировано
4Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(3)
Опубликована: Фев. 3, 2025
Язык: Английский
Процитировано
0Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04357 - e04357
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112323 - 112323
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Case Studies in Construction Materials, Год журнала: 2024, Номер 21, С. e03820 - e03820
Опубликована: Окт. 6, 2024
Язык: Английский
Процитировано
3Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 8(1)
Опубликована: Ноя. 7, 2024
Язык: Английский
Процитировано
2Case Studies in Construction Materials, Год журнала: 2024, Номер 21, С. e03893 - e03893
Опубликована: Окт. 28, 2024
Язык: Английский
Процитировано
2