Medical Relationship Classification Method Based on Dual Channel Attention DOI
Ziqi Zhang, Xiangwei Zheng, Jinsong Zhang

и другие.

Опубликована: Ноя. 24, 2023

Electronic medical record mining based on relationship classification has become a hot topic in the field of healthcare. However, existing models classification, most them use single-layer attention, it results relatively simple feature representation and is easy to lose information during training. Therefore, this paper proposes method dual channel attention. Firstly, 1 combines BERT(Bidirectional Encoder Representation from Transformers), GRU(Gate Recurrent Unit) Global Attention, while 2 Subject_object_mask_generation So Attention. Specifically, we module specify corresponding positions subject object within text. And Attention used focus attention between object. Secondly, outputs two channels are concatenated. Finally, perform concatenated results. We evaluated public dataset CMeIE(Chinese Medical Information Extraction), experimental showed that improved model's accuracy, recall F1 values increased by 2.2%, 0.03% 1.3% respectively, compared baseline. It indicates our certain advantages other methods.

Язык: Английский

An attribution graph-based interpretable method for CNNs DOI
Xiangwei Zheng, Lifeng Zhang, Chunyan Xu

и другие.

Neural Networks, Год журнала: 2024, Номер 179, С. 106597 - 106597

Опубликована: Авг. 5, 2024

Язык: Английский

Процитировано

9

Forecasting solar power generation using evolutionary mating algorithm-deep neural networks DOI Creative Commons
Mohd Herwan Sulaiman, Zuriani Mustaffa

Energy and AI, Год журнала: 2024, Номер 16, С. 100371 - 100371

Опубликована: Апрель 17, 2024

This paper proposes an integration of recent metaheuristic algorithm namely Evolutionary Mating Algorithm (EMA) in optimizing the weights and biases deep neural networks (DNN) for forecasting solar power generation. The study employs a Feed Forward Neural Network (FFNN) to forecast AC output using real plant measurements spanning 34-day period, recorded at 15-minute intervals. intricate nonlinear relationship between irradiation, ambient temperature, module temperature is captured accurate prediction. Additionally, conducts comprehensive comparison with established algorithms, including Differential Evolution (DE-DNN), Barnacles Optimizer (BMO-DNN), Particle Swarm Optimization (PSO-DNN), Harmony Search (HSA-DNN), DNN Adaptive Moment Estimation optimizer (ADAM) Nonlinear AutoRegressive eXogenous inputs (NARX). experimental results distinctly highlight exceptional performance EMA-DNN by attaining lowest Root Mean Squared Error (RMSE) during testing. contribution not only advances methodologies but also underscores potential merging algorithms contemporary improved accuracy reliability.

Язык: Английский

Процитировано

7

A survey on graph neural network-based next POI recommendation for smart cities DOI Creative Commons

Jian Yu,

Lucas Guo,

Jiayu Zhang

и другие.

Journal of Reliable Intelligent Environments, Год журнала: 2024, Номер 10(3), С. 299 - 318

Опубликована: Июль 26, 2024

Abstract Amid the rise of mobile technologies and Location-Based Social Networks (LBSNs), there’s an escalating demand for personalized Point-of-Interest (POI) recommendations. Especially pivotal in smart cities, these systems aim to enhance user experiences by offering location recommendations tailored past check-ins visited POIs. Distinguishing itself from traditional POI recommendations, next approach emphasizes predicting immediate subsequent location, factoring both geographical attributes temporal patterns. This approach, while promising, faces with challenges like capturing evolving preferences navigating data biases. The introduction Graph Neural (GNNs) brings forth a transformative solution, particularly their ability capture high-order dependencies between POIs, understanding deeper relationships patterns beyond connections. survey presents comprehensive exploration GNN-based recommendation approaches, delving into unique characteristics, inherent challenges, potential avenues future research.

Язык: Английский

Процитировано

7

Reinforcement learning-based secure training for adversarial defense in graph neural networks DOI
Dongdong An, Yi Yang, Xin Gao

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129704 - 129704

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

AKA-SafeMed: A safe medication recommendation based on attention mechanism and knowledge augmentation DOI
Xiaomei Yu, Xue Li,

Fangcao Zhao

и другие.

Information Sciences, Год журнала: 2024, Номер 670, С. 120577 - 120577

Опубликована: Апрель 10, 2024

Язык: Английский

Процитировано

4

CR-LCRP: Course recommendation based on Learner–Course Relation Prediction with data augmentation in a heterogeneous view DOI
Xiaomei Yu,

Qian Mao,

Xinhua Wang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 249, С. 123777 - 123777

Опубликована: Март 26, 2024

Язык: Английский

Процитировано

3

Exploring Cancer Genomics with Graph Convolutional Networks: A Comparative Explainability Study with Integrated Gradients and SHAP DOI Creative Commons

Joshit Battula,

Venkata Ashok Jillelamudi,

Chaitanya Krishna Sammeta

и другие.

BIO Web of Conferences, Год журнала: 2025, Номер 163, С. 01003 - 01003

Опубликована: Янв. 1, 2025

In the rapidly advancing field of cancer genomics, identifying new genes and understanding their molecular mechanisms are essential for targeted therapies improving patient outcomes. This study explores capability Graph Convolutional Networks (GCNs) integrating complex multiomics data to uncover intricate biological relationships. However, inherent complexity GCNs often limits interpretability, posing challenges practical applications in clinical settings. To enhance explainability, we systematically compare two state-of-the-art interpretability methods: Integrated Gradients (IG) SHapley Additive exPlanations (SHAP). We quantify model performance through various metrics, achieving an accuracy 76% Area Under ROC curve is 0.78, indicating model’s effective identification both overall predictions positive instances. analyze explanations provided by IG SHAP gain more knowledge decision-making processes GCNs. Our framework interpret contributions omics features GCN models, with highest score observed feature MF:UCEC KIF11. approach identifies novel clarifies mechanisms, enhancing interpretability. The improves accessibility personalized medicine contributes biology.

Язык: Английский

Процитировано

0

Improvement of generalization performance of diagnostic system for drill bit abnormality in rotary percussion drilling with grad-CAM DOI Creative Commons
Yosuke Nakazawa, Natsuo Okada,

Jo Sasaki

и другие.

Deleted Journal, Год журнала: 2025, Номер 7(4)

Опубликована: Апрель 12, 2025

Язык: Английский

Процитировано

0

Predicting Functional Connectivity Network from Routinely Acquired T1-Weighted Imaging-Based Brain Network by Generative U-GCNet DOI
Zhiwei Song,

Chuanzhen Zhu,

Minbo Jiang

и другие.

Neurocomputing, Год журнала: 2024, Номер 611, С. 128709 - 128709

Опубликована: Окт. 9, 2024

Язык: Английский

Процитировано

2

The Design and Implementation of Python Knowledge Graph for Programming Teaching DOI

Xiaotong Jiao,

Xiaomei Yu,

Haowei Peng

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 106 - 121

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

1