Human EEG and artificial neural networks reveal disentangled representations of object real-world size in natural images DOI Open Access
Zitong Lu, Julie D. Golomb

Опубликована: Июль 11, 2024

Remarkably, human brains have the ability to accurately perceive and process real-world size of objects, despite vast differences in distance perspective. While previous studies delved into this phenomenon, distinguishing from other visual perceptions, like depth, has been challenging. Using THINGS EEG2 dataset with high time-resolution brain recordings more ecologically valid naturalistic stimuli, our study uses an innovative approach disentangle neural representations object retinal perceived depth a way that was not previously possible. Leveraging state-of-the-art dataset, EEG representational similarity results reveal pure representation brains. We report timeline processing: appeared first, then size, finally, size. Additionally, we input both these images object-only without natural background artificial networks. Consistent findings, also successfully disentangled all three types networks (visual-only ResNet, visual-language CLIP, language-only Word2Vec). Moreover, multi-modal comparison framework across reveals as stable higher-level dimension space incorporating semantic information. Our research provides detailed clear characterization processing process, which offers further advances insights understanding construction brain-like models.

Язык: Английский

THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior DOI Creative Commons
Martin N. Hebart, Oliver Contier, Lina Teichmann

и другие.

eLife, Год журнала: 2023, Номер 12

Опубликована: Фев. 27, 2023

Understanding object representations requires a broad, comprehensive sampling of the objects in our visual world with dense measurements brain activity and behavior. Here, we present THINGS-data, multimodal collection large-scale neuroimaging behavioral datasets humans, comprising densely sampled functional MRI magnetoencephalographic recordings, as well 4.70 million similarity judgments response to thousands photographic images for up 1,854 concepts. THINGS-data is unique its breadth richly annotated objects, allowing testing countless hypotheses at scale while assessing reproducibility previous findings. Beyond insights promised by each individual dataset, multimodality allows combining much broader view into processing than previously possible. Our analyses demonstrate high quality provide five examples hypothesis-driven data-driven applications. constitutes core public release THINGS initiative (https://things-initiative.org) bridging gap between disciplines advancement cognitive neuroscience.

Язык: Английский

Процитировано

52

Decoding Visual Neural Representations by Multimodal Learning of Brain-Visual-Linguistic Features DOI
Changde Du, Kaicheng Fu,

Jinpeng Li

и другие.

IEEE Transactions on Pattern Analysis and Machine Intelligence, Год журнала: 2023, Номер 45(9), С. 10760 - 10777

Опубликована: Март 30, 2023

Decoding human visual neural representations is a challenging task with great scientific significance in revealing vision-processing mechanisms and developing brain-like intelligent machines. Most existing methods are difficult to generalize novel categories that have no corresponding data for training. The two main reasons 1) the under-exploitation of multimodal semantic knowledge underlying 2) small number paired (stimuli-responses) training data. To overcome these limitations, this paper presents generic decoding method called BraVL uses learning brain-visual-linguistic features. We focus on modeling relationships between brain, linguistic features via deep generative models. Specifically, we leverage mixture-of-product-of-experts formulation infer latent code enables coherent joint generation all three modalities. learn more consistent representation improve efficiency case limited brain activity data, exploit both intra- inter-modality mutual information maximization regularization terms. In particular, our model can be trained under various semi-supervised scenarios incorporate textual obtained from extra categories. Finally, construct trimodal matching datasets, extensive experiments lead some interesting conclusions cognitive insights: practically possible good accuracy; models using combination perform much better than those either them alone; 3) perception may accompanied by influences represent semantics stimuli.

Язык: Английский

Процитировано

37

Visual Representations: Insights from Neural Decoding DOI Creative Commons
Amanda K. Robinson, Genevieve L. Quek, Thomas A. Carlson

и другие.

Annual Review of Vision Science, Год журнала: 2023, Номер 9(1), С. 313 - 335

Опубликована: Март 8, 2023

Patterns of brain activity contain meaningful information about the perceived world. Recent decades have welcomed a new era in neural analyses, with computational techniques from machine learning applied to data decode represented brain. In this article, we review how decoding approaches advanced our understanding visual representations and discuss efforts characterize both complexity behavioral relevance these representations. We outline current consensus regarding spatiotemporal structure recent findings that suggest are at once robust perturbations, yet sensitive different mental states. Beyond physical world, work has shone light on instantiates internally generated states, for example, during imagery prediction. Going forward, remarkable potential assess functional human behavior, reveal change across development aging, uncover their presentation various disorders.

Язык: Английский

Процитировано

25

Generating realistic neurophysiological time series with denoising diffusion probabilistic models DOI Creative Commons
Julius Vetter, Jakob H. Macke, Richard Gao

и другие.

Patterns, Год журнала: 2024, Номер 5(9), С. 101047 - 101047

Опубликована: Авг. 29, 2024

Язык: Английский

Процитировано

6

ChineseEEG: A Chinese Linguistic Corpora EEG Dataset for Semantic Alignment and Neural Decoding DOI Creative Commons
Xinyu Mou,

Cuilin He,

Liwei Tan

и другие.

Scientific Data, Год журнала: 2024, Номер 11(1)

Опубликована: Май 29, 2024

Abstract An Electroencephalography (EEG) dataset utilizing rich text stimuli can advance the understanding of how brain encodes semantic information and contribute to decoding in brain-computer interface (BCI). Addressing scarcity EEG datasets featuring Chinese linguistic stimuli, we present ChineseEEG dataset, a high-density complemented by simultaneous eye-tracking recordings. This was compiled while 10 participants silently read approximately 13 hours from two well-known novels. provides long-duration recordings, along with pre-processed sensor-level data embeddings reading materials extracted pre-trained natural language processing (NLP) model. As pilot derived significantly support research across neuroscience, NLP, linguistics. It establishes benchmark for decoding, aids development BCIs, facilitates exploration alignment between large models human cognitive processes. also aid into brain’s mechanisms within context language.

Язык: Английский

Процитировано

5

Advancing EEG-based brain-computer interface technology via PEDOT:PSS electrodes DOI
Yang Li, Yuzhe Gu, Junchen Teng

и другие.

Matter, Год журнала: 2024, Номер 7(9), С. 2859 - 2895

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

5

An extensive dataset of spiking activity to reveal the syntax of the ventral stream DOI
Paolo Papale, Feng Wang, Matthew W. Self

и другие.

Neuron, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Statistics-Fused Learning for Classification of Randomized Eeg Trials DOI
Wuxia Zhang,

Junchao Tian,

Xiaoyan Zhang

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Exploring Deep Learning Models for EEG Neural Decoding DOI

Laurits Dixen,

Stefan Heinrich, Paolo Burelli

и другие.

Lecture notes in computer science, Год журнала: 2025, Номер unknown, С. 162 - 175

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Decoding Natural Images from EEG Signals Using a learnable Multi-band Spatio-Temporal Encoder DOI
Zhiyuan Xue, Peng Xu, Junpeng Zhang

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0