Comparison of the Brain Visual Cortex and CNN Under Continuous Object Property Space DOI
Qingjie Zhao, Deying Li, Congying Chu

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 3 - 17

Опубликована: Янв. 1, 2025

Язык: Английский

THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior DOI Creative Commons
Martin N. Hebart, Oliver Contier, Lina Teichmann

и другие.

eLife, Год журнала: 2023, Номер 12

Опубликована: Фев. 27, 2023

Understanding object representations requires a broad, comprehensive sampling of the objects in our visual world with dense measurements brain activity and behavior. Here, we present THINGS-data, multimodal collection large-scale neuroimaging behavioral datasets humans, comprising densely sampled functional MRI magnetoencephalographic recordings, as well 4.70 million similarity judgments response to thousands photographic images for up 1,854 concepts. THINGS-data is unique its breadth richly annotated objects, allowing testing countless hypotheses at scale while assessing reproducibility previous findings. Beyond insights promised by each individual dataset, multimodality allows combining much broader view into processing than previously possible. Our analyses demonstrate high quality provide five examples hypothesis-driven data-driven applications. constitutes core public release THINGS initiative (https://things-initiative.org) bridging gap between disciplines advancement cognitive neuroscience.

Язык: Английский

Процитировано

52

Better models of human high-level visual cortex emerge from natural language supervision with a large and diverse dataset DOI
Aria Wang, Kendrick Kay, Thomas Naselaris

и другие.

Nature Machine Intelligence, Год журнала: 2023, Номер 5(12), С. 1415 - 1426

Опубликована: Ноя. 13, 2023

Язык: Английский

Процитировано

37

Is my “red” your “red”?: Evaluating structural correspondences between color similarity judgments using unsupervised alignment DOI Creative Commons
Genji Kawakita, Ariel Zeleznikow-Johnston, Ken Takeda

и другие.

iScience, Год журнала: 2025, Номер 28(3), С. 112029 - 112029

Опубликована: Фев. 15, 2025

Whether one person's subjective experience of the "redness" red is equivalent to another's a fundamental question in consciousness studies. Intersubjective comparison relational structures sensory experiences, termed "qualia structures", can constrain question. We propose an unsupervised alignment method, based on optimal transport, find mapping between similarity experiences without presupposing correspondences (such as "red-to-red"). After collecting judgments for 93 colors, we showed that derived from color-neurotypical participants be "correctly" aligned at group level. In contrast, those color-blind could not with participants. Our results provide quantitative evidence interindividual structural equivalence or difference color qualia, implying people's "red" relationally other color-neurotypical's "red", but "red". This method applicable across modalities, enabling general exploration experiences.

Язык: Английский

Процитировано

1

A large and rich EEG dataset for modeling human visual object recognition DOI
Alessandro T. Gifford, Kshitij Dwivedi, Gemma Roig

и другие.

NeuroImage, Год журнала: 2022, Номер 264, С. 119754 - 119754

Опубликована: Ноя. 15, 2022

Язык: Английский

Процитировано

38

Cortical topographic motifs emerge in a self-organized map of object space DOI Creative Commons
Fenil R. Doshi, Talia Konkle

Science Advances, Год журнала: 2023, Номер 9(25)

Опубликована: Июнь 21, 2023

The human ventral visual stream has a highly systematic organization of object information, but the causal pressures driving these topographic motifs are debated. Here, we use self-organizing principles to learn representation data manifold deep neural network representational space. We find that smooth mapping this space showed many brain-like motifs, with large-scale by animacy and real-world size, supported mid-level feature tuning, naturally emerging face- scene-selective regions. While some theories object-selective cortex posit differently tuned regions brain reflect collection distinctly specified functional modules, present work provides computational support for an alternate hypothesis tuning topography unified

Язык: Английский

Процитировано

21

THINGSplus: New norms and metadata for the THINGS database of 1854 object concepts and 26,107 natural object images DOI Creative Commons

Laura M. Stoinski,

Jonas Perkuhn,

Martin N. Hebart

и другие.

Behavior Research Methods, Год журнала: 2023, Номер 56(3), С. 1583 - 1603

Опубликована: Апрель 24, 2023

To study visual and semantic object representations, the need for well-curated concepts images has grown significantly over past years. address this, we have previously developed THINGS, a large-scale database of 1854 systematically sampled with 26,107 high-quality naturalistic these concepts. With THINGSplus, extend THINGS by adding concept- image-specific norms metadata all one copyright-free image example per concept. Concept-specific were collected properties real-world size, manmadeness, preciousness, liveliness, heaviness, naturalness, ability to move or be moved, graspability, holdability, pleasantness, arousal. Further, provide 53 superordinate categories as well typicality ratings their members. Image-specific includes nameability measure, based on human-generated labels objects depicted in images. Finally, identified new public domain Property (M = 0.97, SD 0.03) 0.01) demonstrate excellent consistency, subsequently arousal only exception (r 0.69). Our property 0.85, 0.11) 0.72, 0.74, 0.88) data correlated strongly external norms, again lowest validity 0.41, 0.08). summarize, THINGSplus provides large-scale, externally validated extension existing an important allowing detailed selection stimuli control variables wide range research interested processing, language, memory.

Язык: Английский

Процитировано

18

Distributed representations of behaviour-derived object dimensions in the human visual system DOI Creative Commons
Oliver Contier, Chris I. Baker, Martin N. Hebart

и другие.

Nature Human Behaviour, Год журнала: 2024, Номер unknown

Опубликована: Сен. 9, 2024

Язык: Английский

Процитировано

8

Spontaneous eye movements reflect the representational geometries of conceptual spaces DOI Creative Commons
Simone Viganò, Rena Bayramova, Christian F. Doeller

и другие.

Proceedings of the National Academy of Sciences, Год журнала: 2024, Номер 121(17)

Опубликована: Апрель 18, 2024

Functional neuroimaging studies indicate that the human brain can represent concepts and their relational structure in memory using coding schemes typical of spatial navigation. However, whether we read out internal representational geometries conceptual spaces solely from behavior remains unclear. Here, report between might be reflected spontaneous eye movements during verbal fluency tasks: When asked participants to randomly generate numbers, correlated with distances along left-to-right one-dimensional geometry number space (mental line), while they scaled distance ring-like two-dimensional color (color wheel) when generated names. Moreover, produced animal names, low-dimensional similarity word frequencies. These results suggest used internally organize gaze behavior.

Язык: Английский

Процитировано

7

Gromov–Wasserstein unsupervised alignment reveals structural correspondences between the color similarity structures of humans and large language models DOI Creative Commons
Genji Kawakita, Ariel Zeleznikow-Johnston, Naotsugu Tsuchiya

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Июль 10, 2024

Large Language Models (LLMs), such as the General Pre-trained Transformer (GPT), have shown remarkable performance in various cognitive tasks. However, it remains unclear whether these models ability to accurately infer human perceptual representations. Previous research has addressed this question by quantifying correlations between similarity response patterns of humans and LLMs. Correlation provides a measure similarity, but relies pre-defined item labels does not distinguish category- item- level falling short characterizing detailed structural correspondence To assess their equivalence more detail, we propose use an unsupervised alignment method based on Gromov-Wasserstein optimal transport (GWOT). GWOT allows for comparison structures without relying label correspondences can reveal fine-grained similarities differences that may be detected simple correlation analysis. Using large dataset judgments 93 colors, compared color (color-neurotypical color-atypical participants) two GPT (GPT-3.5 GPT-4). Our results show structure color-neurotypical participants remarkably well aligned with GPT-4 and, lesser extent, GPT-3.5. These contribute methodological advancements comparing LLMs perception, highlight potential methods correspondences.

Язык: Английский

Процитировано

6

Principles of intensive human neuroimaging DOI
Soazig Guyomarc’h, Tomas Knapen, Elisha P. Merriam

и другие.

Trends in Neurosciences, Год журнала: 2024, Номер unknown

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

6