Neurocomputing, Год журнала: 2024, Номер 609, С. 128482 - 128482
Опубликована: Авг. 28, 2024
Язык: Английский
Neurocomputing, Год журнала: 2024, Номер 609, С. 128482 - 128482
Опубликована: Авг. 28, 2024
Язык: Английский
Journal of Marine Science and Engineering, Год журнала: 2025, Номер 13(3), С. 616 - 616
Опубликована: Март 20, 2025
Underwater wireless sensor networks (UWSNs) widely used for maritime object detection or monitoring of oceanic parameters that plays vital role prediction tsunami to life-cycle marine species by deploying nodes at random locations. However, the dynamic and unpredictable underwater environment poses significant challenges in communication, including interference, collisions, energy inefficiency. In changing make routing possible among or/and base station (BS) an adaptive receiver-initiated deep with power control collision avoidance MAC (DAWPC-MAC) protocol is proposed address The framework based on Deep Q-Learning (DQN) optimize network performance enhancing a varying locations, conserving path loss respect time depth reducing number relaying communication reliable ensuring synchronization. environment, shaped variations environmental such as temperature (T) latitude, longitude, depth, carefully considered design protocol. Sensor are enabled adaptively schedule wake-up times efficiently transmission communicate other and/or courier node data collection forwarding. DAWPC-MAC ensures energy-efficient time-sensitive transmission, improving packet delivery rati (PDR) 14%, throughput over 70%, utility more than 60% compared existing methods like TDTSPC-MAC, DC-MAC, ALOHA MAC. These enhancements significantly contribute longevity operational efficiency time-critical applications.
Язык: Английский
Процитировано
0Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103355 - 103355
Опубликована: Апрель 12, 2025
Язык: Английский
Процитировано
0Transportation Research Part E Logistics and Transportation Review, Год журнала: 2025, Номер 197, С. 104072 - 104072
Опубликована: Март 21, 2025
Язык: Английский
Процитировано
0Ocean Engineering, Год журнала: 2024, Номер 311, С. 119001 - 119001
Опубликована: Авг. 15, 2024
Despite the efforts of maritime authorities to enhance seafarer competencies through International Convention on Standards Training, Certification and Watchkeeping for Seafarers (STCW), human error remains a leading cause accidents. To thoroughly investigate impact various errors among seafarers accidents, this paper aims examine relationships between accidents using data-driven approach from perspective bridge resource management (BRM). Through analysis historical accident reports, dataset associated with is established. The least absolute shrinkage selection operator (LASSO) method employed identify critical prevention. Then, Bayesian Network (BN) model, based Tree Augmented Naive Bayes (TAN) method, constructed reveal relationship types, which are validated by sensitivity case study. results indicate that key all 'Maneuvers', 'Amend/maintain ship course', 'Decision making', 'Cognitive capacity', 'Information', 'Procedure operations', 'Situational awareness' 'Communication'. Moreover, study underscores importance leveraging lessons learned past mitigate risks ensure safe operations. findings contribute deeper understanding dynamics unveiling joint different This offers valuable insights in strengthening safety regulations.
Язык: Английский
Процитировано
3Ocean Engineering, Год журнала: 2024, Номер 311, С. 118912 - 118912
Опубликована: Авг. 8, 2024
Язык: Английский
Процитировано
2Journal of Marine Science and Engineering, Год журнала: 2024, Номер 12(6), С. 968 - 968
Опубликована: Июнь 8, 2024
The navigational safety of ships on waterways plays a crucial role in ensuring the operational efficiency ports. Ship anomalous behavior detection is an important method water traffic surveillance that can effectively identify abnormal ship behavior, such as sudden acceleration or deceleration. In order to detect potential real time, for proposed based text similarity and kernel density estimation. Under assumption known patterns entering leaving port, this behaviors violate time. Firstly, estimation applied construct pattern model trajectories used estimate values motion states. Simultaneously, semantic transformation convert trajectory into text, which ship’s pattern. Subsequently, historical data target are transformed textual trajectories, inbound outbound patterns. Furthermore, constructed real-time state motion, points exceed threshold anomaly factor marked anomalies. Finally, effectiveness validated using simulation data, results indicate accuracy more than 90% comprehensive behavior. This study, approaching from perspective port patterns, enriches methods waterways.
Язык: Английский
Процитировано
1Ocean Engineering, Год журнала: 2024, Номер 313, С. 119511 - 119511
Опубликована: Окт. 23, 2024
Язык: Английский
Процитировано
0Ocean Engineering, Год журнала: 2024, Номер 314, С. 119734 - 119734
Опубликована: Ноя. 12, 2024
Язык: Английский
Процитировано
0Ocean Engineering, Год журнала: 2024, Номер 316, С. 119927 - 119927
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2024, Номер 609, С. 128482 - 128482
Опубликована: Авг. 28, 2024
Язык: Английский
Процитировано
0