Target Area Extraction Algorithm of Infrared Thermal Image Combining Target Detection with Matching Correction DOI Open Access
Dan Yang

Traitement du signal, Год журнала: 2023, Номер 40(1), С. 227 - 234

Опубликована: Фев. 28, 2023

Infrared thermal image makes the target have certain degree of recognition by reflecting radiation information emitted target, which effectively compensates loss visible light in harsh imaging environment.Contour extraction effect area using traditional Canny algorithm is not good, because contour gradient change infrared obvious.At same time, threshold most algorithms needs to be set manually, greatly affected subjective factors, and processing efficiency low.Therefore, this paper studied combining detection with matching correction.First, introduced feature based on grid motion statistics, converted smoothness constraint into thus replacing number extended points acquisition features better performance filtering false other neighborhood statistical points.Second, results obtained previous section, proposed a method descriptors, combined extracted semantic attributes each image, distinguishing subtle differences between sub-categories.Finally, experimental verified effectiveness method.

Язык: Английский

A review of image fusion: Methods, applications and performance metrics DOI
Simrandeep Singh, Harbinder Singh, Gloria Bueno

и другие.

Digital Signal Processing, Год журнала: 2023, Номер 137, С. 104020 - 104020

Опубликована: Март 24, 2023

Язык: Английский

Процитировано

45

EgeFusion: Towards Edge Gradient Enhancement in Infrared and Visible Image Fusion With Multi-Scale Transform DOI
Haojie Tang, Gang Liu, Yao Qian

и другие.

IEEE Transactions on Computational Imaging, Год журнала: 2024, Номер 10, С. 385 - 398

Опубликована: Янв. 1, 2024

Existing image fusion methods focus on aggregate features from different modalities into a clear and comprehensive image. However, these solutions ignore the importance of gradient features, which results in smooth performance contrast information fused images. In this paper, an edge enhancement method for infrared visible is proposed, named EgeFusion. First, source images are decomposed series base detail layers through simple weighted least squares filter. Next, sub-window variance filter proposed layers. For layer, strategy that combines visual saliency mapping with idea adaptive weight assignment designed. The effectively assigns globally, thus providing more valuable about region interest Finally, reconstructed reverse to obtain results. experimental show has significantly enhanced images, makes it easier human eye system interest. Compared other state-of-the-art methods, EgeFusion superior quality acceptable visible, multi-focus, as well multi-modal medical fusion. More importantly, our approach achieves improvements object detection.

Язык: Английский

Процитировано

22

Multimodal super-resolution reconstruction of infrared and visible images via deep learning DOI
Bowen Wang, Yan Zou, Linfei Zhang

и другие.

Optics and Lasers in Engineering, Год журнала: 2022, Номер 156, С. 107078 - 107078

Опубликована: Апрель 21, 2022

Язык: Английский

Процитировано

43

EV-Fusion: A Novel Infrared and Low-Light Color Visible Image Fusion Network Integrating Unsupervised Visible Image Enhancement DOI Creative Commons
Xin Zhang, Xia Wang, Changda Yan

и другие.

IEEE Sensors Journal, Год журнала: 2024, Номер 24(4), С. 4920 - 4934

Опубликована: Янв. 3, 2024

Infrared and visible image fusion can effectively integrate the advantages of two source images, preserving significant target information rich texture details. However, most existing methods are only designed for well-illuminated scenes tend to lose details when encountering low-light because poor brightness images. Some incorporate a light adjustment module, but they typically focus on enhancing intensity neglect enhancement color feature, resulting in unsatisfactory visual effects fused To address this issue, paper proposes novel method called EV-fusion, which explores potential detail features images improve perception Specifically, an unsupervised module is that restores texture, structure by several non-reference loss functions. Then, devised enhanced infrared image. Moreover, salient object feature we propose bilateral-guided salience map embedding into Extensive experiments demonstrate our outperforms state-of-the-art methods.

Язык: Английский

Процитировано

17

IR and visible image fusion using DWT and bilateral filter DOI
Simrandeep Singh, Harbinder Singh, Anita Gehlot

и другие.

Microsystem Technologies, Год журнала: 2022, Номер 29(4), С. 457 - 467

Опубликована: Май 26, 2022

Язык: Английский

Процитировано

31

BTSFusion: Fusion of infrared and visible image via a mechanism of balancing texture and salience DOI
Yao Qian, Gang Liu, Haojie Tang

и другие.

Optics and Lasers in Engineering, Год журнала: 2023, Номер 173, С. 107925 - 107925

Опубликована: Ноя. 9, 2023

Язык: Английский

Процитировано

20

An attention-guided and wavelet-constrained generative adversarial network for infrared and visible image fusion DOI
Xiaowen Liu,

Ren-Hua Wang,

Hongtao Huo

и другие.

Infrared Physics & Technology, Год журнала: 2023, Номер 129, С. 104570 - 104570

Опубликована: Янв. 25, 2023

Язык: Английский

Процитировано

18

Infrared and low-light visible image fusion based on hybrid multiscale decomposition and adaptive light adjustment DOI

Dengpeng Zou,

Bin Yang

Optics and Lasers in Engineering, Год журнала: 2022, Номер 160, С. 107268 - 107268

Опубликована: Сен. 11, 2022

Язык: Английский

Процитировано

26

Modality specific infrared and visible image fusion based on multi-scale rich feature representation under low-light environment DOI
Chenhua Liu, Hanrui Chen, Lei Deng

и другие.

Infrared Physics & Technology, Год журнала: 2024, Номер 140, С. 105351 - 105351

Опубликована: Май 15, 2024

Язык: Английский

Процитировано

6

TCPMFNet: An infrared and visible image fusion network with composite auto encoder and transformer–convolutional parallel mixed fusion strategy DOI
Yi Shi,

Gang Jiang,

Xi Liu

и другие.

Infrared Physics & Technology, Год журнала: 2022, Номер 127, С. 104405 - 104405

Опубликована: Окт. 14, 2022

Язык: Английский

Процитировано

23