Multimedia Tools and Applications, Год журнала: 2025, Номер unknown
Опубликована: Март 4, 2025
Язык: Английский
Multimedia Tools and Applications, Год журнала: 2025, Номер unknown
Опубликована: Март 4, 2025
Язык: Английский
Journal of Water Process Engineering, Год журнала: 2024, Номер 58, С. 104789 - 104789
Опубликована: Янв. 17, 2024
Язык: Английский
Процитировано
69Journal of Cleaner Production, Год журнала: 2023, Номер 406, С. 136885 - 136885
Опубликована: Апрель 3, 2023
Язык: Английский
Процитировано
62International Journal of Electrical Power & Energy Systems, Год журнала: 2023, Номер 152, С. 109269 - 109269
Опубликована: Июнь 6, 2023
Electrical power grid insulators installed outdoors are exposed to environmental conditions, such as the accumulation of contaminants on their surface. The increase surface conductivity insulators, increasing leakage current until there is a flashover. Evaluating in relation contamination level one way determine insulation condition. This paper evaluates time series from high-voltage laboratory experiment using porcelain pin-type insulators. Time forecasting performed with collection machine learning models known ensemble approaches, which include blending, bootstrap aggregation (bagging), sequential (boosting), random subspace, and stacked generalization. According this paper's findings, applying these approaches useful for enhancing performance occurrence breakdowns electrical system. Hodrick–Prescott filter reduces root mean square error metric (to be minimized) by 2.69 times subspace approach. results paper, proposed method stable, low variance when statistical analysis performed, being superior long short-term memory neural network.
Язык: Английский
Процитировано
46Chemosphere, Год журнала: 2024, Номер 352, С. 141393 - 141393
Опубликована: Фев. 5, 2024
Язык: Английский
Процитировано
39Results in Engineering, Год журнала: 2024, Номер 21, С. 101837 - 101837
Опубликована: Фев. 6, 2024
Contemporary infrastructure requires structural elements with enhanced mechanical strength and durability. Integrating nanomaterials into concrete is a promising solution to improve However, the intricacies of such nanoscale cementitious composites are highly complex. Traditional regression models encounter limitations in capturing these intricate compositions provide accurate reliable estimations. This study focuses on developing robust prediction for compressive (CS) graphene nanoparticle-reinforced (GrNCC) through machine learning (ML) algorithms. Three ML models, bagging regressor (BR), decision tree (DT), AdaBoost (AR), were employed predict CS based comprehensive dataset 172 experimental values. Seven input parameters, including graphite nanoparticle (GrN) diameter, water-to-cement ratio (wc), GrN content (GC), ultrasonication (US), sand (SC), curing age (CA), thickness (GT), considered. The trained 70 % data, remaining 30 data was used testing models. Statistical metrics as mean absolute error (MAE), root square (RMSE) correlation coefficient (R) assess predictive accuracy DT AR demonstrated exceptional accuracy, yielding high coefficients 0.983 0.979 training, 0.873 0.822 testing, respectively. Shapley Additive exPlanation (SHAP) analysis highlighted influential role positively impacting CS, while an increased (w/c) negatively affected CS. showcases efficacy techniques accurately predicting nanoparticle-modified concrete, offering swift cost-effective approach assessing nanomaterial impact reducing reliance time-consuming expensive experiments.
Язык: Английский
Процитировано
28Chemosphere, Год журнала: 2025, Номер 372, С. 144074 - 144074
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
1Results in Engineering, Год журнала: 2025, Номер unknown, С. 104307 - 104307
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Results in Engineering, Год журнала: 2025, Номер unknown, С. 104265 - 104265
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Earth Science Informatics, Год журнала: 2025, Номер 18(3)
Опубликована: Фев. 27, 2025
Язык: Английский
Процитировано
1Case Studies in Construction Materials, Год журнала: 2022, Номер 18, С. e01774 - e01774
Опубликована: Дек. 14, 2022
This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Ensemble Decision Tree Bagging (DT-Bagging) for the development of new advanced models prediction Marshall Stability (MS), Flow (MF) asphalt mixes. A comprehensive detailed database 343 data points was established both MS MF. The predicting variables were chosen among most influential, easy-to-determine parameters. trained, tested, validated, outcomes newly developed compared with actual outcomes. root squared error (RSE), Nash-Sutcliffe efficiency (NSE), mean absolute (MAE), square (RMSE), relative (RRMSE), regression coefficient (R2), correlation (R), all used to evaluate performance models. sensitivity analysis (SA) revealed that in case MS, rising order input significance bulk specific gravity compacted aggregate, Gmb (38.56%) > Percentage Aggregates, Ps (19.84%) Bulk Specific Gravity Aggregate, Gsb (19.43%) maximum paving mix, Gmm (7.62%), while MF followed was: (36.93%) (14.11%) (10.85%) (10.19%). parametric (PA) consistency results relation previous findings. DT-Bagging model outperformed other values 0.971 0.980 16.88 0.24 28.27 0.36 0.069 0.041 0.020 0.032 0.010 0.016 (PI), 0.931 0.959 MF, respectively. comparison showed ANN, ANFIS, MEP, are effective reliable approaches estimation MEP-derived mathematical expressions represent novelty MEP relatively simple reliable. Roverall >MEP >ANFIS >ANN exceeding permitted range 0.80 Hence, modeling higher performance, possessed high generalization predication capabilities, assess parameters findings this would assist safer, faster, sustainable from standpoint resources time required perform tests.
Язык: Английский
Процитировано
33