Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 18, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Сен. 18, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2023, Номер 904, С. 166960 - 166960
Опубликована: Сен. 9, 2023
Язык: Английский
Процитировано
49Journal of African Earth Sciences, Год журнала: 2024, Номер 213, С. 105229 - 105229
Опубликована: Март 11, 2024
Gully erosion is a widespread environmental danger, threatening global socio-economic stability and sustainable development. This study comprehensively applied seven machine learning (ML) models including SVM, KNN, RF, XGBoost, ANN, DT, LR, evaluated gully susceptibility in the Tensift catchment predict it within Haouz plain, Morocco. To ensure reliability of findings, employed robust combination inventory, sentinel images, Digital Surface Model. Eighteen predictors, encompassing topographical, geomorphological, environmental, hydrological factors, were selected after multicollinearity analyses. The revealed that approximately 28.18% at very high risk erosion. Furthermore, 15.13% 31.28% are categorized as low respectively. These findings extend to where 7.84% surface area highly risking erosion, while 18.25% 55.18% characterized areas. gauge performance ML models, an array metrics specificity, precision, sensitivity, accuracy employed. highlights XGBoost KNN most promising achieving AUC ROC values 0.96 0.93 test phase. remaining namely RF (AUC = 0.89), LR 0.80), SVM 0.81), DT 0.86), ANN 0.78), also displayed commendable performance. novelty this research its innovative approach combat through cutting edge offering practical solutions for watershed conservation, management, prevention land degradation. insights invaluable addressing challenges posed by region, beyond geographical boundaries can be used defining appropriate mitigation strategies local national scale.
Язык: Английский
Процитировано
26Examples and Counterexamples, Год журнала: 2025, Номер 7, С. 100180 - 100180
Опубликована: Фев. 3, 2025
Язык: Английский
Процитировано
3Agriculture, Год журнала: 2024, Номер 14(7), С. 1071 - 1071
Опубликована: Июль 3, 2024
Artificial intelligence (AI) plays an essential role in agricultural mapping. It reduces costs and time increases efficiency management activities, which improves the food industry. Agricultural mapping is necessary for resource requires technologies farming challenges. The AI applications gives its subsequent use decision-making. This study analyses AI’s current state through bibliometric indicators a literature review to identify methods, resources, geomatic tools, types, their management. methodology begins with bibliographic search Scopus Web of Science (WoS). Subsequently, data analysis establish scientific contribution, collaboration, trends. United States (USA), Spain, Italy are countries that produce collaborate more this area knowledge. Of studies, 76% machine learning (ML) 24% deep (DL) applications. Prevailing algorithms such as Random Forest (RF), Neural Networks (ANNs), Support Vector Machines (SVMs) correlate activities In addition, contributes associated production, disease detection, crop classification, rural planning, forest dynamics, irrigation system improvements.
Язык: Английский
Процитировано
15Environmental Earth Sciences, Год журнала: 2024, Номер 83(3)
Опубликована: Фев. 1, 2024
Язык: Английский
Процитировано
9Water, Год журнала: 2024, Номер 16(8), С. 1141 - 1141
Опубликована: Апрель 17, 2024
Mapping spatial data is essential for the monitoring of flooded areas, prognosis hazards and prevention flood risks. The Ganges River Delta, Bangladesh, world’s largest river delta prone to floods that impact social–natural systems through losses lives damage infrastructure landscapes. Millions people living in this region are vulnerable repetitive due exposure, high susceptibility low resilience. Cumulative effects monsoon climate, rainfall, tropical cyclones hydrogeologic setting Delta increase probability floods. While engineering methods mitigation include practical solutions (technical construction dams, bridges hydraulic drains), regulation traffic land planning support systems, geoinformation rely on modelling remote sensing (RS) evaluate dynamics hazards. Geoinformation indispensable mapping catchments areas visualization affected regions real-time monitoring, addition implementing developing emergency plans vulnerability assessment warning supported by RS data. In regard, study used monitor southern segment Delta. Multispectral Landsat 8-9 OLI/TIRS satellite images were evaluated (March) post-flood (November) periods analysis extent landscape changes. Deep Learning (DL) algorithms GRASS GIS modules qualitative quantitative as advanced image processing. results constitute a series maps based classified
Язык: Английский
Процитировано
6Groundwater for Sustainable Development, Год журнала: 2024, Номер 26, С. 101281 - 101281
Опубликована: Авг. 1, 2024
Язык: Английский
Процитировано
4Heliyon, Год журнала: 2024, Номер 10(19), С. e38228 - e38228
Опубликована: Сен. 28, 2024
Preserving water and soil resources ranks among the top priorities outlined in national strategy. Indeed, integrated management of vulnerable territories, particularly Morocco, requires a deep knowledge hydrological functioning use these regions. The diverse hydroclimatic morphological features within Ouljet Es Soltane watershed, which is sub-basin extensive Oued Sebou present significant challenges managing its resources. Identifying areas susceptible to erosion crucial for implementing preventive measures basin ensuring sustainable development. Morphometric analysis plays an important role effective utilization basin's This study used four MCDM models, including CF (Compound Factor), VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje), TOPSIS (Technique Order Preference by Similarity Ideal Solution), SAW (Simple Additive Weighing), prioritize 20 sub-watersheds watershed. Based on sub-watershed prioritization results obtained from VIKOR, TOPSIS, 16 achieved scores 0, 0.59, 0.8, respectively, positioning it as first rank. These findings highlight that exhibits high susceptibility classified one most terms risk. can be into categories: low, moderate, high, very high. On other hand, model only has two low moderate susceptibility. Overall, suggest morphometric parameters are highly identifying at risk erosion. Furthermore, methods exhibit greater predictive accuracy compared model. comparison models involved Spearman correlation coefficient test (SCCT). this provide valuable insights making informed decisions developing framework control strategies.
Язык: Английский
Процитировано
3Journal of Hydrology Regional Studies, Год журнала: 2025, Номер 58, С. 102249 - 102249
Опубликована: Фев. 18, 2025
Язык: Английский
Процитировано
0AIP conference proceedings, Год журнала: 2025, Номер 3157, С. 110002 - 110002
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0