Synergistic assessment of multi-scenario urban waterlogging through data-driven decoupling analysis in high-density urban areas: A case study in Shenzhen, China DOI
Shiqi Zhou,

Weiyi Jia,

Mo Wang

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 369, С. 122330 - 122330

Опубликована: Сен. 3, 2024

Язык: Английский

Forecasting Multi-Step-Ahead Street-Scale nuisance flooding using seq2seq LSTM surrogate model for Real-Time applications in a Coastal-Urban city DOI Creative Commons
Binata Roy, Jonathan L. Goodall, Diana McSpadden

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 132697 - 132697

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

6

Assessment of Urban Flood Disaster Responses and Causal Analysis at Different Temporal Scales Based on Social Media Data and Machine Learning Algorithms DOI Creative Commons

Qichen Guo,

Sheng Jiao, Yuchen Yang

и другие.

International Journal of Disaster Risk Reduction, Год журнала: 2025, Номер 117, С. 105170 - 105170

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

4

Exploring machine learning potential for climate change risk assessment DOI
Federica Zennaro, Elisa Furlan,

Christian Simeoni

и другие.

Earth-Science Reviews, Год журнала: 2021, Номер 220, С. 103752 - 103752

Опубликована: Июль 27, 2021

Язык: Английский

Процитировано

83

Impacts of building configurations on urban stormwater management at a block scale using XGBoost DOI
Shiqi Zhou, Zhiyu Liu, Mo Wang

и другие.

Sustainable Cities and Society, Год журнала: 2022, Номер 87, С. 104235 - 104235

Опубликована: Окт. 2, 2022

Язык: Английский

Процитировано

71

Urban flood susceptibility mapping based on social media data in Chengdu city, China DOI Creative Commons
Yao Li, Frank Osei, Tangao Hu

и другие.

Sustainable Cities and Society, Год журнала: 2022, Номер 88, С. 104307 - 104307

Опубликована: Ноя. 17, 2022

Increase in urban flood hazards has become a major threat to cities, causing considerable losses of life and the economy. To improve pre-disaster strategies mitigate potential losses, it is important make susceptibility assessments carry out spatiotemporal analyses. In this study, we used standard deviation ellipse (SDE) analyze spatial pattern floods find area interest (AOI) based upon related social media data that were collected Chengdu city, China. We as response variable selected 10 flood-influencing factors independent variables. estimated model using Naïve Bayes (NB) method. The results show events are concentrated northeast-central part especially around city center. Results checked by Receiver Operating Characteristic (ROC) curve, showing under curve (AUC) was equal 0.8299. This validation result confirmed can predict with satisfactory accuracy. map center provides realistic reference for monitoring early warning.

Язык: Английский

Процитировано

67

Urban storm water drainage system optimization using a sustainability index and LID/BMPs DOI
Babak Azari, Massoud Tabesh

Sustainable Cities and Society, Год журнала: 2021, Номер 76, С. 103500 - 103500

Опубликована: Окт. 29, 2021

Язык: Английский

Процитировано

58

Logging-data-driven permeability prediction in low-permeable sandstones based on machine learning with pattern visualization: A case study in Wenchang A Sag, Pearl River Mouth Basin DOI
Xiaobo Zhao, Xiaojun Chen, Qiao Huang

и другие.

Journal of Petroleum Science and Engineering, Год журнала: 2022, Номер 214, С. 110517 - 110517

Опубликована: Апрель 19, 2022

Язык: Английский

Процитировано

44

Greening the city: Thriving for biodiversity and sustainability DOI
Paulo Pereira, Francesc Baró

The Science of The Total Environment, Год журнала: 2022, Номер 817, С. 153032 - 153032

Опубликована: Янв. 7, 2022

Язык: Английский

Процитировано

40

Urban flood risk differentiation under land use scenario simulation DOI Creative Commons
Hongbo Zhao,

Tianshun Gu,

Junqing Tang

и другие.

iScience, Год журнала: 2023, Номер 26(4), С. 106479 - 106479

Опубликована: Март 23, 2023

The frequent urban floods have seriously affected the regional sustainable development in recent years. It is significant to understand characteristics of flood risk and reasonably predict under different land use scenarios. This study used random forest multi-criteria decision analysis models assess spatiotemporal Zhengzhou City, China, from 2005 2020, proposed a robust method coupling Bayesian network patch-generating simulation future probability. We found that City presented an upward trend its spatial pattern was "high middle low surrounding areas". In addition, patterns scenario would be more conducive reducing risk. Our results can provide theoretical support for scientifically optimizing improve management.

Язык: Английский

Процитировано

35

High temporal resolution urban flood prediction using attention-based LSTM models DOI
Lin Zhang, Huapeng Qin,

Junqi Mao

и другие.

Journal of Hydrology, Год журнала: 2023, Номер 620, С. 129499 - 129499

Опубликована: Апрель 10, 2023

Язык: Английский

Процитировано

34