Expert Systems with Applications, Год журнала: 2024, Номер 263, С. 125744 - 125744
Опубликована: Ноя. 8, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2024, Номер 263, С. 125744 - 125744
Опубликована: Ноя. 8, 2024
Язык: Английский
Journal of Hydrology, Год журнала: 2024, Номер 636, С. 131275 - 131275
Опубликована: Май 7, 2024
Язык: Английский
Процитировано
17Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 121719 - 121719
Опубликована: Сен. 22, 2023
Язык: Английский
Процитировано
37Water Resources Research, Год журнала: 2023, Номер 59(9)
Опубликована: Сен. 1, 2023
Abstract Accurate runoff forecasting plays a vital role in issuing timely flood warnings. Whereas, previous research has primarily focused on historical and precipitation variability while disregarding other factors' influence. Additionally, the prediction process of most machine learning models is opaque, resulting low interpretability model predictions. Hence, this study develops an ensemble deep to forecast from three hydrological stations. Initially, time‐varying filtered based empirical mode decomposition employed decompose series into several internal functions (IMFs). Subsequently, complexity each IMF component evaluated by multi‐scale permutation entropy, IMFs are classified high‐ low‐frequency portions entropy values. Considering high‐frequency still exhibit great volatility, robust local mean adopted perform secondary portions. Then, meteorological variables processed Relief algorithm variance inflation factor features as inputs, individual subsequences preliminary outputs bidirectional gated recurrent unit extreme models. Random forests (RF) introduced nonlinear predicted sub‐models obtain final results. The proposed outperforms various evaluation metrics. Meanwhile, due opaque nature models, shapley assess contribution selected variable long‐term trend runoff. could serve essential reference for precise warning.
Язык: Английский
Процитировано
34Journal of Cleaner Production, Год журнала: 2023, Номер 388, С. 135975 - 135975
Опубликована: Янв. 10, 2023
Язык: Английский
Процитировано
24Journal of Hydroinformatics, Год журнала: 2023, Номер 25(3), С. 943 - 970
Опубликована: Март 27, 2023
Abstract In runoff prediction, the prediction accuracy is often affected by non-linear and non-stationary characteristics of series. this study, a coupled forecasting model proposed that decomposes original series an improved complete ensemble Empirical Mode Decomposition (EMD) (ICEEMDAN) combined with wavelet decomposition (WD) then forecasts monthly using support vector machine (SVM) optimized seagull optimization algorithm (SOA). method, Intrinsic Function (IMF) Residual (Res) are obtained decomposing ICEEMDAN. The WD method used to perform quadratic high-frequency components decomposed ICEEMDAN make as smooth possible. Then input into SOA-SVM for prediction. Finally, results each component superimposed reconstructed obtain final results. RMSE, Mean Absolute Percentage Error (MAPE), Nash-Sutcliffe Efficiency Coefficient (NSEC), R selected evaluate compared model, EMD-SOA-SVM CEEMDAN-SOA-SVM other models. applied forecast Hongjiadu Manwan Reservoirs. When benchmarking models, ICEEMDAN-WD-SOA-SVM attains smallest Root Square (RMSE) MAPE largest NSEC R. has best effect, highest accuracy, lowest error.
Язык: Английский
Процитировано
24Journal of Hydrology, Год журнала: 2024, Номер 633, С. 130946 - 130946
Опубликована: Фев. 28, 2024
Язык: Английский
Процитировано
12Water Resources Management, Год журнала: 2024, Номер 38(6), С. 1987 - 2013
Опубликована: Фев. 29, 2024
Язык: Английский
Процитировано
9Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Окт. 9, 2024
Accurate runoff forecasting is of great significance for water resource allocation flood control and disaster reduction. However, due to the inherent strong randomness sequences, this task faces significant challenges. To address challenge, study proposes a new SMGformer forecast model. The model integrates Seasonal Trend decomposition using Loess (STL), Informer's Encoder layer, Bidirectional Gated Recurrent Unit (BiGRU), Multi-head self-attention (MHSA). Firstly, in response nonlinear non-stationary characteristics sequence, STL used extract sequence's trend, period, residual terms, multi-feature set based on 'sequence-sequence' constructed as input model, providing foundation subsequent models capture evolution runoff. key features are then captured layer. Next, BiGRU layer learn temporal information these features. further optimize output MHSA mechanism introduced emphasize impact important information. Finally, accurate achieved by transforming through Fully connected verify effectiveness proposed monthly data from two hydrological stations China selected, eight compare performance results show that compared with Informer 1th step MAE decreases 42.2% 36.6%, respectively; RMSE 37.9% 43.6% NSE increases 0.936 0.975 0.487 0.837, respectively. In addition, KGE at 3th 0.960 0.805, both which can maintain above 0.8. Therefore, accurately sequence extend effective period
Язык: Английский
Процитировано
9Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133190 - 133190
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Environmental Research, Год журнала: 2024, Номер 259, С. 119478 - 119478
Опубликована: Июнь 24, 2024
Язык: Английский
Процитировано
7