Study on runoff forecasting and error correction driven by atmosphere–ocean-land dataset DOI
Xinyu Chang, Jun Guo, Yi Liu

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 263, С. 125744 - 125744

Опубликована: Ноя. 8, 2024

Язык: Английский

Ensemble learning using multivariate variational mode decomposition based on the Transformer for multi-step-ahead streamflow forecasting DOI

Jinjie Fang,

Linshan Yang,

Xiaohu Wen

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 636, С. 131275 - 131275

Опубликована: Май 7, 2024

Язык: Английский

Процитировано

17

A new hybrid model for monthly runoff prediction using ELMAN neural network based on decomposition-integration structure with local error correction method DOI
Dongmei Xu,

Xiao-xue Hu,

Wenchuan Wang

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 121719 - 121719

Опубликована: Сен. 22, 2023

Язык: Английский

Процитировано

37

Robust Runoff Prediction With Explainable Artificial Intelligence and Meteorological Variables From Deep Learning Ensemble Model DOI Open Access
Junhao Wu, Zhaocai Wang, Jinghan Dong

и другие.

Water Resources Research, Год журнала: 2023, Номер 59(9)

Опубликована: Сен. 1, 2023

Abstract Accurate runoff forecasting plays a vital role in issuing timely flood warnings. Whereas, previous research has primarily focused on historical and precipitation variability while disregarding other factors' influence. Additionally, the prediction process of most machine learning models is opaque, resulting low interpretability model predictions. Hence, this study develops an ensemble deep to forecast from three hydrological stations. Initially, time‐varying filtered based empirical mode decomposition employed decompose series into several internal functions (IMFs). Subsequently, complexity each IMF component evaluated by multi‐scale permutation entropy, IMFs are classified high‐ low‐frequency portions entropy values. Considering high‐frequency still exhibit great volatility, robust local mean adopted perform secondary portions. Then, meteorological variables processed Relief algorithm variance inflation factor features as inputs, individual subsequences preliminary outputs bidirectional gated recurrent unit extreme models. Random forests (RF) introduced nonlinear predicted sub‐models obtain final results. The proposed outperforms various evaluation metrics. Meanwhile, due opaque nature models, shapley assess contribution selected variable long‐term trend runoff. could serve essential reference for precise warning.

Язык: Английский

Процитировано

34

Optimal dispatching rules of hydropower reservoir in flood season considering flood resources utilization: A case study of Three Gorges Reservoir in China DOI
Zhanxing Xu, Mo Li,

Jianzhong Zhou

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 388, С. 135975 - 135975

Опубликована: Янв. 10, 2023

Язык: Английский

Процитировано

24

Improved monthly runoff time series prediction using the SOA–SVM model based on ICEEMDAN–WD decomposition DOI Creative Commons

Dong-mei Xu,

Xiang Wang, Wenchuan Wang

и другие.

Journal of Hydroinformatics, Год журнала: 2023, Номер 25(3), С. 943 - 970

Опубликована: Март 27, 2023

Abstract In runoff prediction, the prediction accuracy is often affected by non-linear and non-stationary characteristics of series. this study, a coupled forecasting model proposed that decomposes original series an improved complete ensemble Empirical Mode Decomposition (EMD) (ICEEMDAN) combined with wavelet decomposition (WD) then forecasts monthly using support vector machine (SVM) optimized seagull optimization algorithm (SOA). method, Intrinsic Function (IMF) Residual (Res) are obtained decomposing ICEEMDAN. The WD method used to perform quadratic high-frequency components decomposed ICEEMDAN make as smooth possible. Then input into SOA-SVM for prediction. Finally, results each component superimposed reconstructed obtain final results. RMSE, Mean Absolute Percentage Error (MAPE), Nash-Sutcliffe Efficiency Coefficient (NSEC), R selected evaluate compared model, EMD-SOA-SVM CEEMDAN-SOA-SVM other models. applied forecast Hongjiadu Manwan Reservoirs. When benchmarking models, ICEEMDAN-WD-SOA-SVM attains smallest Root Square (RMSE) MAPE largest NSEC R. has best effect, highest accuracy, lowest error.

Язык: Английский

Процитировано

24

A hybrid framework based on LSTM for predicting karst spring discharge using historical data DOI
Wenrui Zhang, Limin Duan, Tingxi Liu

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 633, С. 130946 - 130946

Опубликована: Фев. 28, 2024

Язык: Английский

Процитировано

12

Evaluation and Interpretation of Runoff Forecasting Models Based on Hybrid Deep Neural Networks DOI
Xin Yang,

Jianzhong Zhou,

Qianyi Zhang

и другие.

Water Resources Management, Год журнала: 2024, Номер 38(6), С. 1987 - 2013

Опубликована: Фев. 29, 2024

Язык: Английский

Процитировано

9

SMGformer: integrating STL and multi-head self-attention in deep learning model for multi-step runoff forecasting DOI Creative Commons
Wenchuan Wang, M. H. Gu,

Yang-hao Hong

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Окт. 9, 2024

Accurate runoff forecasting is of great significance for water resource allocation flood control and disaster reduction. However, due to the inherent strong randomness sequences, this task faces significant challenges. To address challenge, study proposes a new SMGformer forecast model. The model integrates Seasonal Trend decomposition using Loess (STL), Informer's Encoder layer, Bidirectional Gated Recurrent Unit (BiGRU), Multi-head self-attention (MHSA). Firstly, in response nonlinear non-stationary characteristics sequence, STL used extract sequence's trend, period, residual terms, multi-feature set based on 'sequence-sequence' constructed as input model, providing foundation subsequent models capture evolution runoff. key features are then captured layer. Next, BiGRU layer learn temporal information these features. further optimize output MHSA mechanism introduced emphasize impact important information. Finally, accurate achieved by transforming through Fully connected verify effectiveness proposed monthly data from two hydrological stations China selected, eight compare performance results show that compared with Informer 1th step MAE decreases 42.2% 36.6%, respectively; RMSE 37.9% 43.6% NSE increases 0.936 0.975 0.487 0.837, respectively. In addition, KGE at 3th 0.960 0.805, both which can maintain above 0.8. Therefore, accurately sequence extend effective period

Язык: Английский

Процитировано

9

A runoff prediction approach based on machine learning, ensemble forecasting and error correction: A case study of source area of Yellow River DOI
Jingyang Wang, Xiang Li,

Ruiyan Wu

и другие.

Journal of Hydrology, Год журнала: 2025, Номер unknown, С. 133190 - 133190

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Analyzing variation of water inflow to inland lakes under climate change: Integrating deep learning and time series data mining DOI
Hao Wang, Yongping Li, Guohe Huang

и другие.

Environmental Research, Год журнала: 2024, Номер 259, С. 119478 - 119478

Опубликована: Июнь 24, 2024

Язык: Английский

Процитировано

7