Earth Science Informatics, Год журнала: 2024, Номер 18(1)
Опубликована: Дек. 14, 2024
Язык: Английский
Earth Science Informatics, Год журнала: 2024, Номер 18(1)
Опубликована: Дек. 14, 2024
Язык: Английский
Journal of Hydrology, Год журнала: 2023, Номер 629, С. 130558 - 130558
Опубликована: Дек. 7, 2023
Язык: Английский
Процитировано
43Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 121719 - 121719
Опубликована: Сен. 22, 2023
Язык: Английский
Процитировано
38Journal of Hydrology, Год журнала: 2024, Номер 634, С. 131041 - 131041
Опубликована: Март 11, 2024
Язык: Английский
Процитировано
18Journal of Hydrology, Год журнала: 2024, Номер 643, С. 131996 - 131996
Опубликована: Сен. 16, 2024
Язык: Английский
Процитировано
16Stochastic Environmental Research and Risk Assessment, Год журнала: 2025, Номер unknown
Опубликована: Янв. 19, 2025
Язык: Английский
Процитировано
2Results in Engineering, Год журнала: 2025, Номер unknown, С. 104267 - 104267
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1Journal of Hydroinformatics, Год журнала: 2023, Номер 26(1), С. 255 - 283
Опубликована: Дек. 11, 2023
Abstract Accurate runoff prediction is vital in efficiently managing water resources. In this paper, a hybrid model combining complete ensemble empirical mode decomposition with adaptive noise, variational decomposition, CABES, and long short-term memory network (CEEMDAN-VMD-CABES-LSTM) proposed. Firstly, CEEMDAN used to decompose the original data, high-frequency component decomposed using VMD. Then, each input into LSTM optimized by CABES for prediction. Finally, results of individual predictions are combined reconstructed produce monthly predictions. The employed predict at Xiajiang hydrological station Yingluoxia station. A comprehensive comparison conducted other models including back propagation (BP), LSTM, etc. assessment model's performance uses four evaluation indexes. Results reveal that CEEMDAN-VMD-CABES-LSTM showcased highest forecast accuracy among all evaluated. Compared single root mean square error (RMSE) absolute percentage (MAPE) decreased 71.09 65.26%, respectively, RMSE MAPE 65.13 40.42%, respectively. R NSEC both sites near 1.
Язык: Английский
Процитировано
22Journal of Hydroinformatics, Год журнала: 2024, Номер 26(5), С. 1059 - 1079
Опубликована: Апрель 12, 2024
ABSTRACT Water quality prediction is crucial for effective river stream management. Dissolved oxygen, conductivity and chemical oxygen demand are vital parameters water quality. Development of machine learning (ML) deep (DL) methods made them widely used in this domain. Sophisticated DL techniques, especially long short-term memory (LSTM) networks, required accurate, real-time multistep prediction. LSTM networks predicting due to their ability handle long-term dependencies sequential data. We propose a novel hybrid approach combining with data smoothing method. The Sava at the Jamena hydrological station serves as case study. Our workflow uses alongside LOcally WEighted Scatterplot Smoothing (LOWESS) technique filtering. For comparison, Support Vector Regressor (SVR) baseline Performance evaluated using Root Mean Squared Error (RMSE) Coefficient Determination R2 metrics. Results demonstrate that outperforms method, an up 0.9998 RMSE 0.0230 on test set dissolved oxygen. Over 5-day period, our achieves 0.9912 0.1610 confirming it reliable method
Язык: Английский
Процитировано
9Environmental Research, Год журнала: 2024, Номер 248, С. 118267 - 118267
Опубликована: Янв. 18, 2024
Язык: Английский
Процитировано
8Environmental Earth Sciences, Год журнала: 2024, Номер 83(2)
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
7