None DOI Creative Commons

Marcel Konan Yao,

Naminata Sangaré Épse Soumahoro,

Kouakou Koffi

и другие.

Science Letters, Год журнала: 2024, Номер 12

Опубликована: Фев. 13, 2024

This work aimed to study the modeling of organic pollution waters Déganobo Lake system by three models: Multiple Linear Regression model (MLR model), Mutilayer Perceptron (MLP model) and Regression/ hybrid (MLR/MLP model).In its implementation, chemical oxygen demand (COD) these waters, obtained from August 2021 July 2022, was used.Two approaches were done in case their COD MLP MLR/MLP model: static dynamic modeling.The results have highlighted low predictions MLR (36.2 %) models (6-8-1 for 7-3-1 modeling, both predicting less than 35% experimental values with high error (RMSE upper 1.30 relative 0.750).However, (MLR/6-3-1 MLR/7-3-1 modeling) well predicted around 99% very errors 0.0001 0.006 cases).So, most efficient predict waters.The accuracy this ecological again provided during study.

Язык: Английский

A deep learning interpretable model for river dissolved oxygen multi-step and interval prediction based on multi-source data fusion DOI
Zhaocai Wang, Qingyu Wang, Zhixiang Liu

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 629, С. 130637 - 130637

Опубликована: Янв. 14, 2024

Язык: Английский

Процитировано

72

Interpretable prediction, classification and regulation of water quality: A case study of Poyang Lake, China DOI
Zhiyuan Yao, Zhaocai Wang,

Jinghan Huang

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 951, С. 175407 - 175407

Опубликована: Авг. 9, 2024

Язык: Английский

Процитировано

24

Photocatalytic degradation of drugs and dyes using a maching learning approach DOI Creative Commons

Ganesan Anandhi,

M. Iyapparaja

RSC Advances, Год журнала: 2024, Номер 14(13), С. 9003 - 9019

Опубликована: Янв. 1, 2024

The waste management industry uses an increasing number of mathematical prediction models to accurately forecast the behavior organic pollutants during catalytic degradation.

Язык: Английский

Процитировано

22

Prediction of riverine daily minimum dissolved oxygen concentrations using hybrid deep learning and routine hydrometeorological data DOI
Yue Hu, Chuankun Liu, W. M. Wollheim

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 918, С. 170383 - 170383

Опубликована: Янв. 26, 2024

Язык: Английский

Процитировано

15

Dissolved oxygen prediction using regularized extreme learning machine with clustering mechanism in a black bass aquaculture pond DOI
Pei Shi, Liang Kuang,

Limin Yuan

и другие.

Aquacultural Engineering, Год журнала: 2024, Номер 105, С. 102408 - 102408

Опубликована: Фев. 5, 2024

Язык: Английский

Процитировано

12

Multi-step ahead dissolved oxygen concentration prediction based on knowledge guided ensemble learning and explainable artificial intelligence DOI
Tunhua Wu, Zhaocai Wang, Jinghan Dong

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 636, С. 131297 - 131297

Опубликована: Май 9, 2024

Язык: Английский

Процитировано

6

On the use of hydrodynamic modelling and random forest classifiers for the prediction of hypoxia in coastal lagoons DOI Creative Commons
Irene Simonetti,

Claudio Lubello,

Lorenzo Cappietti

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 951, С. 175424 - 175424

Опубликована: Авг. 12, 2024

Hypoxia is one of the fundamental threats to water quality globally, particularly for partially enclosed basins with limited renewal, such as coastal lagoons. This work proposes combined use a machine learning technique, field observations, and data derived from hydrodynamic heat exchange numerical model predict, forecast up 10 days in advance, occurrence hypoxia eutrophic lagoon. The random forest algorithm used, training validating set models classify dissolved oxygen levels Orbetello lagoon, central Mediterranean Sea (Italy), has provided test case assessing reliability proposed methodology. Results proved that methodology effective providing reliable short-term evaluation DO levels, high resolution both time space throughout an entire An overall classification accuracy 91 % was found models, score identifying severe - i.e. hourly lower than 2 mg/l 86 %. predictors extracted allows us overcome intrinsic limitation modelling approaches which rely on input relatively few, local measurements, inability capture spatial heterogeneity distributions, unless several measuring points are available. methodological approach application similar environments.

Язык: Английский

Процитировано

6

A long-term multivariate time series prediction model for dissolved oxygen DOI Creative Commons

Jingzhe Hu,

Peixuan Wang,

Dashe Li

и другие.

Ecological Informatics, Год журнала: 2024, Номер 82, С. 102695 - 102695

Опубликована: Июнь 20, 2024

Accurate and efficient long-term prediction of marine dissolved oxygen (DO) is crucial for the sustainable development aquaculture. However, multidimensional time dependency lag effects chemical variables present significant challenges when handling multiple inputs in univariate tasks. To address these issues, we designed a multivariate time-series model (LMFormer) based on Transformer architecture. The proposed decomposition strategy effectively leverages feature information at different scales, thereby reducing loss critical information. Additionally, dynamic variable selection gating mechanism was to optimize collinearity problem data extraction process. Finally, an two-stage attention architecture capture long-range dependencies between features. This study conducted high-precision 7-day advance DO predictions two case studies, environmentally stable Shandong Peninsula China San Juan Islands United States, which are affected by extreme conditions such as ocean currents. experimental results demonstrate superior performance generalizability model. In case, mean absolute error (MAE), root square (RMSE), coefficient determination (R2), Kling–Gupta efficiency (KGE) reached 0.0159, 0.126, 0.9743, 0.9625, respectively. MAE reduced average 42.34% compared that baseline model, RMSE 24.57%, R2 increased 22.54%, KGE improved 12.04%. Overall, achieves data, providing valuable references management decision-making

Язык: Английский

Процитировано

4

Dissolved Oxygen Modeling by a Bayesian-Optimized Explainable Artificial Intelligence Approach DOI Creative Commons

Qiulin Li,

Jinchao He,

Dewei Mu

и другие.

Applied Sciences, Год журнала: 2025, Номер 15(3), С. 1471 - 1471

Опубликована: Янв. 31, 2025

Dissolved oxygen (DO) is a vital water quality index influencing biological processes in aquatic environments. Accurate modeling of DO levels crucial for maintaining ecosystem health and managing freshwater resources. To this end, the present study contributes Bayesian-optimized explainable machine learning (ML) model to reveal dynamics predict concentrations. Three ML models, support vector regression (SVR), tree (RT), boosting ensemble, coupled with Bayesian optimization (BO), are employed estimate Mississippi River. It concluded that BO-SVR outperforms others, achieving coefficient determination (CD) 0.97 minimal error metrics (root mean square = 0.395 mg/L, absolute 0.303 mg/L). Shapley Additive Explanation (SHAP) analysis identifies temperature, discharge, gage height as most dominant factors affecting levels. Sensitivity confirms robustness models under varying input conditions. With perturbations from 5% 30%, temperature sensitivity ranges 1.0% 6.1%, discharge 0.9% 5.2%, 0.8% 5.0%. Although experience reduced accuracy extended prediction horizons, they still achieve satisfactory results (CD > 0.75) forecasting periods up 30 days. The established also exhibit higher than many prior approaches. This highlights potential BO-optimized reliable forecasting, offering valuable insights resource management.

Язык: Английский

Процитировано

0

Quantifying the Relative Contributions of Forcings to the Variability of Estuarine Surface Suspended Sediments Using a Machine Learning Framework DOI Creative Commons
Juliana Távora, Roy El Hourany, Elisa Helena Leão Fernandes

и другие.

Continental Shelf Research, Год журнала: 2025, Номер unknown, С. 105429 - 105429

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0