Understanding the risks of peri-urbanization to food systems to help establish sustainable agriculture near cities DOI

Xingjia Wang,

Jiamin Ma,

Dongyan Wang

и другие.

Environmental Impact Assessment Review, Год журнала: 2024, Номер 112, С. 107777 - 107777

Опубликована: Дек. 13, 2024

Язык: Английский

Exploring the environmental risks and seasonal variations of potentially toxic elements (PTEs) in fine road dust in resource-based cities based on Monte Carlo simulation, geo-detector and random forest model DOI
Y. Richard Yang, Xinwei Lu, Bo Yu

и другие.

Journal of Hazardous Materials, Год журнала: 2024, Номер 473, С. 134708 - 134708

Опубликована: Май 23, 2024

Язык: Английский

Процитировано

20

Identifying interactive effects of spatial drivers in soil heavy metal pollutants using interpretable machine learning models DOI

Deyu Duan,

Peng Wang, Xin Rao

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 934, С. 173284 - 173284

Опубликована: Май 18, 2024

Язык: Английский

Процитировано

15

Identification of driving factors for heavy metals and polycyclic aromatic hydrocarbons pollution in agricultural soils using interpretable machine learning DOI
Jun Wang, Yirong Deng,

Zaoquan Huang

и другие.

The Science of The Total Environment, Год журнала: 2025, Номер 960, С. 178384 - 178384

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Heavy metal enrichment characteristics and synergistic evaluation in soil-crop-human systems of agricultural land with different soil parent materials DOI
Jialiang Li,

Jierui Dai,

Liyuan Yang

и другие.

Environmental Geochemistry and Health, Год журнала: 2025, Номер 47(3)

Опубликована: Фев. 8, 2025

Язык: Английский

Процитировано

2

Multiple Environmental Variables as Covariates to Improve the Accuracy of Spatial Prediction Models for SOM on Karst Aera DOI Open Access
Yun Jiang, Fupeng Li, Yufeng Gong

и другие.

Land Degradation and Development, Год журнала: 2025, Номер unknown

Опубликована: Янв. 12, 2025

ABSTRACT Aims accurately predicting the spatial distribution of soil organic matter (SOM) is essential for environmental management and carbon storage estimation. However, diversity sources variables poses a challenge in studying SOM. Methods order to address this issue, we propose leveraging multiple employing machine learning models, specifically Lightweight gradient boosting (LightGBM) random forest (RF), SOM distribution. 128 samples were collected from Caohai National Nature Reserve, their content was measured. Results study found that average 36.75 g/kg. Compared traditional linear regression models such as ordinary kriging (OK), least squares (OLS), geographically weighted (GWR), based on nonlinear regression, LightGBM RF, demonstrated higher cross‐validated coefficients determination ( R 2 ) 0.62 0.60, respectively, outperforming other models. Additionally, RF exhibited lower mean absolute error (MAE) root square (RMSE), indicating stability generalization capability. The among showed consistency, with observed southern near‐Caohai Lake regions northern farther Lake. Shapley additive explanations (SHAP) model highlighted agricultural land (AL), pH, Elevation (ELV) primary covariates influencing Conclusions provides valuable insights support estimation karst plateau region.

Язык: Английский

Процитировано

1

Hotspot mapping and risk prediction of fluoride in natural waters across the Tibetan Plateau DOI
Yi Yang, Ru Zhang,

Yangzong Deji

и другие.

Journal of Hazardous Materials, Год журнала: 2024, Номер 465, С. 133510 - 133510

Опубликована: Янв. 13, 2024

Язык: Английский

Процитировано

6

Digital Mapping and Scenario Prediction of Soil Salinity in Coastal Lands Based on Multi-Source Data Combined with Machine Learning Algorithms DOI Creative Commons

Mengge Zhou,

Yonghua Li

Remote Sensing, Год журнала: 2024, Номер 16(14), С. 2681 - 2681

Опубликована: Июль 22, 2024

Salinization is a major soil degradation process threatening ecosystems and posing great challenge to sustainable agriculture food security worldwide. This study aimed evaluate the potential of state-of-the-art machine learning algorithms in salinity (EC1:5) mapping. Further, we predicted distribution patterns under different future scenarios Yellow River Delta. A geodatabase comprising 201 samples 19 conditioning factors (containing data based on remote sensing images such as Landsat, SPOT/VEGETATION PROBA-V, SRTMDEMUTM, Sentinel-1, Sentinel-2) was used compare predictive performance empirical bayesian kriging regression, random forest, CatBoost models. The model exhibited highest with both training testing datasets, an average MAE 1.86, RMSE 3.11, R2 0.59 datasets. Among explanatory factors, Na most important for predicting EC1:5, followed by normalized difference vegetation index organic carbon. Soil EC1:5 predictions suggested that Delta region faces severe salinization, particularly coastal zones. three increases carbon content (1, 2, 3 g/kg), 2 g/kg scenario resulted best improvement effect saline–alkali soils > ds/m. Our results provide valuable insights policymakers improve land quality plan regional agricultural development.

Язык: Английский

Процитировано

5

Machine learning models with innovative outlier detection techniques for predicting heavy metal contamination in soils DOI
Ram Proshad, S Asha,

Rong Kun Jason Tan

и другие.

Journal of Hazardous Materials, Год журнала: 2024, Номер 481, С. 136536 - 136536

Опубликована: Ноя. 19, 2024

Язык: Английский

Процитировано

4

Machine learning for membrane bioreactor research: principles, methods, applications, and a tutorial DOI

Yizhe Lai,

Kang Xiao, Yifan He

и другие.

Frontiers of Environmental Science & Engineering, Год журнала: 2024, Номер 19(3)

Опубликована: Дек. 20, 2024

Язык: Английский

Процитировано

4

Potential risk of heavy metals release in sediments and soils of the Yellow River Basin (Henan section): A perspective on bioavailability and bioaccessibility DOI Creative Commons
Peng Wang,

Furong Yu,

Haonan Lv

и другие.

Ecotoxicology and Environmental Safety, Год журнала: 2025, Номер unknown, С. 117799 - 117799

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0