Environmental Impact Assessment Review, Год журнала: 2024, Номер 112, С. 107777 - 107777
Опубликована: Дек. 13, 2024
Язык: Английский
Environmental Impact Assessment Review, Год журнала: 2024, Номер 112, С. 107777 - 107777
Опубликована: Дек. 13, 2024
Язык: Английский
Journal of Hazardous Materials, Год журнала: 2024, Номер 473, С. 134708 - 134708
Опубликована: Май 23, 2024
Язык: Английский
Процитировано
20The Science of The Total Environment, Год журнала: 2024, Номер 934, С. 173284 - 173284
Опубликована: Май 18, 2024
Язык: Английский
Процитировано
15The Science of The Total Environment, Год журнала: 2025, Номер 960, С. 178384 - 178384
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Environmental Geochemistry and Health, Год журнала: 2025, Номер 47(3)
Опубликована: Фев. 8, 2025
Язык: Английский
Процитировано
2Land Degradation and Development, Год журнала: 2025, Номер unknown
Опубликована: Янв. 12, 2025
ABSTRACT Aims accurately predicting the spatial distribution of soil organic matter (SOM) is essential for environmental management and carbon storage estimation. However, diversity sources variables poses a challenge in studying SOM. Methods order to address this issue, we propose leveraging multiple employing machine learning models, specifically Lightweight gradient boosting (LightGBM) random forest (RF), SOM distribution. 128 samples were collected from Caohai National Nature Reserve, their content was measured. Results study found that average 36.75 g/kg. Compared traditional linear regression models such as ordinary kriging (OK), least squares (OLS), geographically weighted (GWR), based on nonlinear regression, LightGBM RF, demonstrated higher cross‐validated coefficients determination ( R 2 ) 0.62 0.60, respectively, outperforming other models. Additionally, RF exhibited lower mean absolute error (MAE) root square (RMSE), indicating stability generalization capability. The among showed consistency, with observed southern near‐Caohai Lake regions northern farther Lake. Shapley additive explanations (SHAP) model highlighted agricultural land (AL), pH, Elevation (ELV) primary covariates influencing Conclusions provides valuable insights support estimation karst plateau region.
Язык: Английский
Процитировано
1Journal of Hazardous Materials, Год журнала: 2024, Номер 465, С. 133510 - 133510
Опубликована: Янв. 13, 2024
Язык: Английский
Процитировано
6Remote Sensing, Год журнала: 2024, Номер 16(14), С. 2681 - 2681
Опубликована: Июль 22, 2024
Salinization is a major soil degradation process threatening ecosystems and posing great challenge to sustainable agriculture food security worldwide. This study aimed evaluate the potential of state-of-the-art machine learning algorithms in salinity (EC1:5) mapping. Further, we predicted distribution patterns under different future scenarios Yellow River Delta. A geodatabase comprising 201 samples 19 conditioning factors (containing data based on remote sensing images such as Landsat, SPOT/VEGETATION PROBA-V, SRTMDEMUTM, Sentinel-1, Sentinel-2) was used compare predictive performance empirical bayesian kriging regression, random forest, CatBoost models. The model exhibited highest with both training testing datasets, an average MAE 1.86, RMSE 3.11, R2 0.59 datasets. Among explanatory factors, Na most important for predicting EC1:5, followed by normalized difference vegetation index organic carbon. Soil EC1:5 predictions suggested that Delta region faces severe salinization, particularly coastal zones. three increases carbon content (1, 2, 3 g/kg), 2 g/kg scenario resulted best improvement effect saline–alkali soils > ds/m. Our results provide valuable insights policymakers improve land quality plan regional agricultural development.
Язык: Английский
Процитировано
5Journal of Hazardous Materials, Год журнала: 2024, Номер 481, С. 136536 - 136536
Опубликована: Ноя. 19, 2024
Язык: Английский
Процитировано
4Frontiers of Environmental Science & Engineering, Год журнала: 2024, Номер 19(3)
Опубликована: Дек. 20, 2024
Язык: Английский
Процитировано
4Ecotoxicology and Environmental Safety, Год журнала: 2025, Номер unknown, С. 117799 - 117799
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0