Lecture notes in computer science, Год журнала: 2023, Номер unknown, С. 66 - 80
Опубликована: Янв. 1, 2023
Язык: Английский
Lecture notes in computer science, Год журнала: 2023, Номер unknown, С. 66 - 80
Опубликована: Янв. 1, 2023
Язык: Английский
Cities, Год журнала: 2024, Номер 147, С. 104828 - 104828
Опубликована: Фев. 1, 2024
Inland areas are suffering from depopulation and a lack of services, with many citizens deciding to move the city. Smart cities require decentralised collective energy model in form renewable communities (RECs). This work aims propose an economic analysis residential photovoltaic systems within REC according different incentive market scenarios. For this scope, Net Present Value (NPV) is used both baseline alternative scenarios showing very good profitability, confirmed by sensitivity, scenario risk analysis. It therefore evident how avoided cost bill has decisive impact on result amplified virtuous behaviour consumption synchronous production phase. Subsequent analyses concern profits obtained divided among prosumers it shown that revenues shared partial profile may be right compromise. In order consider more realistic case additional consumer analysed REC. The proposed show interesting policy implications: subsidies key factors for sustainable based green consumption.
Язык: Английский
Процитировано
23Renewable Energy, Год журнала: 2022, Номер 202, С. 1291 - 1304
Опубликована: Дек. 3, 2022
Язык: Английский
Процитировано
63Journal of Cleaner Production, Год журнала: 2024, Номер 451, С. 141932 - 141932
Опубликована: Март 29, 2024
Язык: Английский
Процитировано
14Case Studies in Thermal Engineering, Год журнала: 2025, Номер unknown, С. 106012 - 106012
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
2Applied Energy, Год журнала: 2025, Номер 389, С. 125752 - 125752
Опубликована: Март 20, 2025
Язык: Английский
Процитировано
1Energy Policy, Год журнала: 2025, Номер 198, С. 114499 - 114499
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
1Sustainable Cities and Society, Год журнала: 2022, Номер 89, С. 104354 - 104354
Опубликована: Дек. 17, 2022
Язык: Английский
Процитировано
26Energies, Год журнала: 2023, Номер 16(8), С. 3412 - 3412
Опубликована: Апрель 13, 2023
In the last few years, many innovative solutions have been presented to address climate change crisis. One of is participation community members in collective production solar electricity instead individual production. The current study aims provide a critical literature review electricity, which called “community-shared solar” (CSS). Sixty-seven peer-reviewed publications were selected based on setting up combination related keywords. To analyze concept CSS existing literature, multi-level perspective (MLP) framework was used observe innovation at niche, regime, and landscape levels. Four aspects, including technical, economic, socio-political, regulatory institutional, considered evaluate those three results revealed that technical economic has reached maturity internal momentum can take it next However, lack attention socio-political aspect institutional aspect, particular, potential barrier emergence its position as leading energy system.
Язык: Английский
Процитировано
12Sustainable Energy Grids and Networks, Год журнала: 2022, Номер 33, С. 100963 - 100963
Опубликована: Ноя. 17, 2022
Язык: Английский
Процитировано
19IEEE Access, Год журнала: 2023, Номер 11, С. 60501 - 60515
Опубликована: Янв. 1, 2023
The design of renewable-based and collective energy systems requires consumption data with fine temporal spatial resolution. Despite the increasing deployment smart meters, obtaining such directly from measurements can still be challenging, particularly when attempting to gather historical over a reasonable period for many end users. As result, there is need models simulate or predict these (e.g., hourly load profiles). Typically, rely on numerous specific detailed observations, as type, household size residential customers, operating hours commercial ones. However, gathering this level detail becomes increasingly difficult number diversity users increase. Therefore, paper proposes data-driven approach profiles heterogeneous using only their monthly time-of-use electricity bills inputs. We create training set limited diverse categories and, differently other approaches aimed at classifying users, we develop regression model map typical profiles. Experimental results one year various end-user demonstrate an average normalized mean absolute error approximately 26% instantaneous less than 4% values. Comparative analysis standard two-step based classification reveals that our proposed method outperforms others in terms prediction accuracy statistical metrics.
Язык: Английский
Процитировано
11