Опубликована: Июнь 21, 2024
Язык: Английский
Опубликована: Июнь 21, 2024
Язык: Английский
Energy, Год журнала: 2024, Номер 293, С. 130666 - 130666
Опубликована: Фев. 10, 2024
Язык: Английский
Процитировано
37International Journal of Electrical Power & Energy Systems, Год журнала: 2025, Номер 165, С. 110512 - 110512
Опубликована: Фев. 5, 2025
Язык: Английский
Процитировано
2International Journal of Renewable Energy Development, Год журнала: 2024, Номер 13(2), С. 329 - 339
Опубликована: Фев. 20, 2024
To tackle the challenges associated with variability and uncertainty in distributed power generation, as well complexities of solving high-dimensional energy management mathematical models mi-crogrid optimization, a microgrid optimization method is proposed based on an improved soft actor-critic algorithm. In method, algorithm employs entropy-based objective function to encourage target exploration without assigning signifi-cantly higher probabilities any part action space, which can simplify analysis process generation while effectively mitigating convergence fragility issues model management. The effectiveness validated through case study op-timization results revealed increase 51.20%, 52.38%, 13.43%, 16.50%, 58.26%, 36.33% total profits compared Deep Q-network algorithm, state-action-reward-state-action proximal policy ant-colony strategy genetic fuzzy inference system, theoretical retailer stragety, respectively. Additionally, com-pared other methods strategies, learn more optimal behaviors anticipate fluctuations electricity prices demand.
Язык: Английский
Процитировано
8Electric Power Systems Research, Год журнала: 2024, Номер 230, С. 110263 - 110263
Опубликована: Март 5, 2024
Язык: Английский
Процитировано
7Energy, Год журнала: 2024, Номер 302, С. 131814 - 131814
Опубликована: Май 26, 2024
Язык: Английский
Процитировано
5Entropy, Год журнала: 2024, Номер 26(8), С. 699 - 699
Опубликована: Авг. 17, 2024
To meet the challenges of energy sustainability, integrated system (IES) has become a key component in promoting development innovative systems. Accurate and reliable multivariate load prediction is prerequisite for IES optimal scheduling steady running, but uncertainty fluctuation many influencing factors increase difficulty forecasting. Therefore, this article puts forward multi-energy approach IES, which combines fennec fox optimization algorithm (FFA) hybrid kernel extreme learning machine. Firstly, comprehensive weight method used to combine entropy Pearson correlation coefficient, fully considering information content correlation, selecting affecting prediction, ensuring that input features can effectively modify results. Secondly, coupling relationship between learned predicted using At same time, FFA parameter optimization, reduces randomness setting. Finally, utilized measured data at Arizona State University verify its effectiveness The results indicate mean absolute error (MAE) proposed 0.0959, 0.3103 0.0443, respectively. root square (RMSE) 0.1378, 0.3848 0.0578, weighted percentage (WMAPE) only 1.915%. Compared other models, model higher accuracy, with maximum reductions on MAE, RMSE WMAPE 0.3833, 0.491 2.8138%,
Язык: Английский
Процитировано
5International Journal of Electrical Power & Energy Systems, Год журнала: 2024, Номер 160, С. 110111 - 110111
Опубликована: Июль 10, 2024
Язык: Английский
Процитировано
4Renewable Energy, Год журнала: 2024, Номер 231, С. 121018 - 121018
Опубликована: Июль 19, 2024
Язык: Английский
Процитировано
4Discover Sustainability, Год журнала: 2024, Номер 5(1)
Опубликована: Июль 30, 2024
Abstract Microgrids have emerged as a promising solution for enhancing energy sustainability and resilience in localized distribution systems. Efficient management accurate load forecasting are one of the critical aspects improving operation microgrids. Various approaches prediction using statistical models discussed literature. In this work, novel framework that incorporates machine learning (ML) techniques is presented an solar wind generation. The anticipated approach also emphasizes time series-based microgrids with precise estimation State Charge (SoC) battery. A unique feature proposed utilizes historical data employs series analysis coupled different ML to forecast demand commercial scenario. Long Short-Term Memory (LSTM) Linear Regression (LR) employed experimental study under three cases, such (i) generation, (ii) and, (iii) SoC results show Random Forest (RF) LSTM performs well respectively. On other hand, Artificial Neural Network (ANN) model exhibited superior accuracy terms estimation. Further, Graphical User Interface (GUI) developed evaluating efficacy framework.
Язык: Английский
Процитировано
3Electronics, Год журнала: 2025, Номер 14(2), С. 334 - 334
Опубликована: Янв. 16, 2025
This study proposes a new approach and explores how pattern recognition enhances collaboration between users Agile teams in software development, focusing on shared resources decision-making efficiency. Using domain-specific modeling languages (DSMLs) within security-by-design framework, the research identifies patterns that support team selection, effort estimation, risk management for Afghanistan’s ministries. These align development with governmental needs by clarifying stakeholder roles fostering cooperation. The builds p-mart-Repository-Programs (P-MARt) repository, integrating data mining, algorithms, ETL (Extract, Transform, Load) processes to develop innovative methodologies. approaches enable dynamic knowledge management, refine documentation, improve project outcomes. Central this is our Pattern Shared Vision Refinement (PSVR) approach, which emphasizes robust collaboration, security, adaptability. By addressing challenges unique operations, PSVR strengthens practices ensures high-quality delivery. analyzing historical trends introducing strategies, underscores critical role of aligning organizational goals. It demonstrates systematic identification can optimize interaction secure consensus, ultimately enhancing engineering outcomes context.
Язык: Английский
Процитировано
0