Journal of Environmental Management, Год журнала: 2024, Номер 357, С. 120774 - 120774
Опубликована: Апрель 1, 2024
Язык: Английский
Journal of Environmental Management, Год журнала: 2024, Номер 357, С. 120774 - 120774
Опубликована: Апрель 1, 2024
Язык: Английский
Journal of Energy Storage, Год журнала: 2024, Номер 86, С. 111179 - 111179
Опубликована: Март 7, 2024
Язык: Английский
Процитировано
97Applied Energy, Год журнала: 2024, Номер 369, С. 123542 - 123542
Опубликована: Май 31, 2024
Язык: Английский
Процитировано
38World Electric Vehicle Journal, Год журнала: 2024, Номер 15(3), С. 93 - 93
Опубликована: Март 1, 2024
Climate change necessitates urgent action to decarbonize the transport sector. Sustainable vehicles represent crucial alternatives traditional combustion engines. This study comprehensively compares four prominent sustainable vehicle technologies: biofuel-powered (BPVs), fuel cell (FCVs), electric (EVs), and solar vehicles. We examine each technology’s history, development, classification, key components, operational principles. Furthermore, we assess their sustainability through technical factors, environmental impacts, cost considerations, policy dimensions. Moreover, discussion section addresses challenges opportunities associated with technology assesses social impact, including public perception adoption. Each offers promise for transportation but faces unique challenges. Policymakers, industry stakeholders, researchers must collaborate address these accelerate transition toward a decarbonized future. Potential future research areas are identified guide advancements in technologies.
Язык: Английский
Процитировано
26Sustainable Energy Technologies and Assessments, Год журнала: 2024, Номер 65, С. 103766 - 103766
Опубликована: Март 25, 2024
Язык: Английский
Процитировано
16International Journal of Electrochemical Science, Год журнала: 2024, Номер 19(9), С. 100747 - 100747
Опубликована: Июль 31, 2024
This paper proposes a data-driven method for jointly estimating the State of Charge (SOC) and Health (SOH) batteries, addressing impact battery aging on SOC estimation. Initially, Support Vector Machine (SVM) is employed to estimate SOH battery, using constant voltage charging time discharging lithium-ion batteries as inputs, output. By training SVM model, accurate estimation achieved. Subsequently, rated capacity adjusted based estimated obtain current maximum available capacity. adjustment allows coupling SOC, resulting in that accounts factors. Leveraging advantages Convolutional Neural Networks (CNN) feature extraction Long Short-Term Memory (LSTM) neural networks handling long-term sequential data, CNN-LSTM model utilized The proposed utilizes Oxford Battery Dataset (Cells 1–8) NASA (B0005–B0007) estimation, (Cell 8) (B0007) results demonstrate Root Mean Square Error (RMSE) less than 0.81 % Absolute (MAE) 0.65 Cells 1–8, while B0005 B0007, RMSE 1.81 MAE 1.29 %. For show average over entire lifecycle Cell 8 0.3923 0.3339 %, whereas 0.6123 0.4976
Язык: Английский
Процитировано
12Energy, Год журнала: 2024, Номер 293, С. 130743 - 130743
Опубликована: Фев. 19, 2024
Язык: Английский
Процитировано
9Chemical Society Reviews, Год журнала: 2024, Номер unknown
Опубликована: Янв. 1, 2024
Fundamentals of battery recycling play a vital role in addressing the challenges posed by spent lithium-ion batteries providing theoretical foundation and technical tools necessary for efficient LIBs.
Язык: Английский
Процитировано
9Applied Energy, Год журнала: 2024, Номер 377, С. 124624 - 124624
Опубликована: Окт. 16, 2024
Язык: Английский
Процитировано
7Journal of Dynamics Monitoring and Diagnostics, Год журнала: 2024, Номер unknown
Опубликована: Янв. 8, 2024
With the dramatic increase in electric vehicles (EVs) globally, demand for lithium-ion batteries has grown dramatically, resulting many being retired future. Developing a rapid and robust capacity estimation method is challenging work to recognize battery ageing level on service provide regroup strategy of retied secondary use. There are still limitations current methods, such as direct internal resistance (DCIR) electrochemical impedance spectroscopy (EIS), terms efficiency robustness. To address challenges, this paper proposes an improved version DCIR, named pulse technique (PIT), with more First, PIT carried out based transient excitation dynamic voltage measurement using high sampling frequency, which coherence analysis used guide selection reliable frequency band. The can be extracted wide range bands compared traditional DCIR method, obtains information evaluation. Second, various statistical variables extract features Pearson correlation applied determine highly correlated features. Then linear regression model developed map relationship between capacity. validate performance proposed experimental system designed conduct comparative studies EIS two 18650 connected series. results reveal that indicators EIS, contributes higher accuracy than technology lower time cost. Conflict Interest Statement authors declare no conflicts interest.
Язык: Английский
Процитировано
6Energy, Год журнала: 2024, Номер unknown, С. 134293 - 134293
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
6