Alexandria Engineering Journal, Год журнала: 2025, Номер 123, С. 460 - 470
Опубликована: Март 28, 2025
Язык: Английский
Alexandria Engineering Journal, Год журнала: 2025, Номер 123, С. 460 - 470
Опубликована: Март 28, 2025
Язык: Английский
Journal of Visual Communication and Image Representation, Год журнала: 2023, Номер 97, С. 103936 - 103936
Опубликована: Сен. 21, 2023
Язык: Английский
Процитировано
26Computers and Electronics in Agriculture, Год журнала: 2024, Номер 218, С. 108701 - 108701
Опубликована: Фев. 13, 2024
Язык: Английский
Процитировано
15IEEE Transactions on Geoscience and Remote Sensing, Год журнала: 2024, Номер 62, С. 1 - 11
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
14Optics & Laser Technology, Год журнала: 2024, Номер 177, С. 111221 - 111221
Опубликована: Май 24, 2024
Язык: Английский
Процитировано
12Digital Signal Processing, Год журнала: 2024, Номер 153, С. 104611 - 104611
Опубликована: Май 31, 2024
Язык: Английский
Процитировано
12Optics & Laser Technology, Год журнала: 2025, Номер 187, С. 112835 - 112835
Опубликована: Март 31, 2025
Язык: Английский
Процитировано
2IEEE Access, Год журнала: 2023, Номер 11, С. 64769 - 64781
Опубликована: Янв. 1, 2023
The CA-YOLO (Coordinate Attention-YOLO) model has been optimized for object detection in complex remote sensing images, addressing key issues faced by multi-object algorithms. These include weak multi-scale feature learning capabilities and the challenging tradeoff between accuracy parameter complexity. Built on framework of YOLOv5, incorporates a lightweight coordinate attention module shallow layer to improve detailed extraction suppress redundant information interference, while spatial pyramid pooling-fast with tandem construction is implemented deeper layer. also employs stochastic pooling strategy fuse from low-level high-level layers, reducing number parameters improving inference speed. anchor box mechanism modified loss function have enhance learning. Results show that outperforms original YOLO terms accuracy, an average [email protected] improvement 4.8% [email protected]:0.95 3.8%. Additionally, demonstrates exceptional speed, averaging 125 fps, which reinforces its superiority generalization ability, overall efficiency. Notably, these improvements were achieved maintaining same complexity as other models, making choice various applications.
Язык: Английский
Процитировано
22Forests, Год журнала: 2024, Номер 15(5), С. 869 - 869
Опубликована: Май 16, 2024
Disease and detection is crucial for the protection of forest growth, reproduction, biodiversity. Traditional methods face challenges such as limited coverage, excessive time resource consumption, poor accuracy, diminishing effectiveness disease prevention control. By addressing these challenges, this study leverages drone remote sensing data combined with deep object models, specifically employing YOLO-v3 algorithm based on loss function optimization, efficient accurate tree diseases pests. Utilizing drone-mounted cameras, captures insect pest image information in pine areas, followed by segmentation, merging, feature extraction processing. The computing system airborne embedded devices designed to ensure efficiency accuracy. improved CIoU was used detect pests diseases. Compared traditional IoU function, takes into account overlap area, distance between center predicted frame actual frame, consistency aspect ratio. experimental results demonstrate proposed model’s capability process images at a slightly faster speed, an average processing less than 0.5 s per image, while achieving accuracy surpassing 95%. identifying high comprehensiveness offers significant potential developing inspection plans. However, limitations exist performance complex environments, necessitating further research improve model universality adaptability across diverse regions. Future directions include exploring advanced models minimize demands enhance practical application support
Язык: Английский
Процитировано
7Sensors, Год журнала: 2025, Номер 25(1), С. 196 - 196
Опубликована: Янв. 1, 2025
Modern city construction focuses on developing smart transportation, but the recognition of large number non-motorized vehicles in is still not sufficient. Compared to fixed equipment, drones have advantages image acquisition due their flexibility and maneuverability. With dataset collected from aerial images taken by drones, this study proposed a novel lightweight architecture for small objection detection based YOLO framework, named EBR-YOLO. Firstly, since targets application scenario are generally small, Backbone layers reduced, AZML module enrich detail information enhance model learning capability. Secondly, C2f reconstructed using part convolutional PConv reduce network’s computational volume improve speed. Finally, downsampling operation reshaped combining with introduced ADown further amount model. The experimental results show that algorithm achieves an mAP 98.9% FPS 89.8 self-built paper, which only 0.2% 0.3 lower compared original YOLOv8 network, respectively, parameters 70% baseline, ensures accuracy speed while reducing its greatly. At same time, generalization experiments carried out UCAS-AOD CARPK datasets, performance almost as baseline.
Язык: Английский
Процитировано
1Neurocomputing, Год журнала: 2025, Номер unknown, С. 129289 - 129289
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1