Ensemble evolutionary algorithms equipped with Q‐learning strategy for solving distributed heterogeneous permutation flowshop scheduling problems considering sequence‐dependent setup time DOI Creative Commons
Fubin Liu, Kaizhou Gao, Dachao Li

и другие.

IET Collaborative Intelligent Manufacturing, Год журнала: 2024, Номер 6(1)

Опубликована: Март 1, 2024

Abstract A distributed heterogeneous permutation flowshop scheduling problem with sequence‐dependent setup times (DHPFSP‐SDST) is addressed, which well reflects real‐world scenarios in factories. The objective to minimise the maximum completion time (makespan) by assigning jobs factories, and sequencing them within each factory. First, a mathematical model describe DHPFSP‐SDST established. Second, four meta‐heuristics, including genetic algorithms, differential evolution, artificial bee colony, iterated greedy (IG) algorithms are improved optimally solve concerned compared other existing optimisers literature. Nawaz‐Enscore‐Ham (NEH) heuristic employed for generating an initial solution. Then, five local search operators designed based on characteristics enhance algorithms' performance. To choose appropriately during iterations, Q‐learning‐based strategy adopted. Finally, extensive numerical experiments conducted 72 instances using 5 optimisers. obtained optimisation results comparisons prove that IG algorithm along Q‐learning selection shows better performance respect its peers. proposed exhibits higher efficiency problems.

Язык: Английский

Reinforcement learning-assisted evolutionary algorithm: A survey and research opportunities DOI
Yanjie Song, Yutong Wu, Yangyang Guo

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 86, С. 101517 - 101517

Опубликована: Фев. 27, 2024

Язык: Английский

Процитировано

37

A cooperative evolutionary algorithm with simulated annealing for integrated scheduling of distributed flexible job shops and distribution DOI

Zhengpei Zhang,

Yaping Fu, Kaizhou Gao

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 85, С. 101467 - 101467

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

26

Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times DOI
Guohui Zhang, Shaofeng Yan, Xiaohui Song

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 107974 - 107974

Опубликована: Фев. 13, 2024

Язык: Английский

Процитировано

22

Modeling and optimization algorithm for energy-efficient distributed assembly hybrid flowshop scheduling problem considering worker resources DOI
Fei Yu, Chao Lu, Lvjiang Yin

и другие.

Journal of Industrial Information Integration, Год журнала: 2024, Номер 40, С. 100620 - 100620

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

22

A Q-learning memetic algorithm for energy-efficient heterogeneous distributed assembly permutation flowshop scheduling considering priorities DOI
Cong Luo, Wenyin Gong, Fei Ming

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 85, С. 101497 - 101497

Опубликована: Фев. 2, 2024

Язык: Английский

Процитировано

21

Review on ensemble meta-heuristics and reinforcement learning for manufacturing scheduling problems DOI
Yaping Fu, Yifeng Wang, Kaizhou Gao

и другие.

Computers & Electrical Engineering, Год журнала: 2024, Номер 120, С. 109780 - 109780

Опубликована: Окт. 18, 2024

Язык: Английский

Процитировано

20

Scheduling Multiobjective Dynamic Surgery Problems via Q-Learning-Based Meta-Heuristics DOI
Hui Yu, Kaizhou Gao, Naiqi Wu

и другие.

IEEE Transactions on Systems Man and Cybernetics Systems, Год журнала: 2024, Номер 54(6), С. 3321 - 3333

Опубликована: Фев. 21, 2024

This work addresses multiobjective dynamic surgery scheduling problems with considering uncertain setup time and processing time. When dealing them, researchers have to consider rescheduling due the arrivals of urgent patients. The goals are minimize fuzzy total medical cost, maximum completion time, maximize average patient satisfaction. First, we develop a mathematical model for describing addressed problems. is expressed by triangular numbers. Then, four meta-heuristics improved, eight variants developed, including artificial bee colony, genetic algorithm, teaching-learning-base optimization, imperialist competitive algorithm. For improving initial solutions' quality, two initialization strategies developed. Six local search proposed fine exploitation $Q$ -learning algorithm used choose suitable among them in iterative process meta-heuristics. states actions defined according characteristic Finally, algorithms tested 57 instances different scales. analysis discussions verify that improved colony most one all compared algorithms.

Язык: Английский

Процитировано

16

A Q-learning driven multi-objective evolutionary algorithm for worker fatigue dual-resource-constrained distributed hybrid flow shop DOI
Haonan Song, Junqing Li,

Zhaosheng Du

и другие.

Computers & Operations Research, Год журнала: 2024, Номер unknown, С. 106919 - 106919

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

11

A self-adaptive co-evolutionary algorithm for multi-objective flexible job-shop rescheduling problem with multi-phase processing speed selection, condition-based preventive maintenance and dynamic repairman assignment DOI
Youjun An, Ziye Zhao, Kaizhou Gao

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 89, С. 101643 - 101643

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

10

A novel importance-guided particle swarm optimization based on MLP for solving large-scale feature selection problems DOI
Yu Xue, Chenyi Zhang

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 91, С. 101760 - 101760

Опубликована: Ноя. 4, 2024

Язык: Английский

Процитировано

10